ENGINEERING EFFECT OF THE HIMALAYAN OROGEN AND ENGINEERING GEOLOGICAL ZONING OF CHINA-NEPAL RAILWAY
-
摘要: 造山带内动力作用的工程效应是地学与工程领域基础科学研究的前沿问题。结合GIS技术和相关地学理论,对喜马拉雅造山带由构造划分的高喜马拉雅、低喜马拉雅和特提斯喜马拉雅3个地块进行研究,揭示不同地块工程地质特性和灾害效应受内动力制约的普适性规律。提出:在挤压碰撞造山机制作用下快速隆升的高、低喜马拉雅,地震以逆冲型为主,地震强度大、频率高,水平应力相对较大,主应力方向近NE-WS方向,地形向大高差发展、河流下切强烈,山地灾害严重;而属于拆离地系,处于相对沉陷状态的特提斯喜马拉雅,地震以正断型为主,地震活动性相对较弱,水平应力相对较小,主应力方向近E-W方向,地形演化向着减弱地势的趋向发展,雪崩灾害严重;此外,高喜马拉雅特有的海洋性冰川地貌、冰湖和冰川泥石流,可能是控制跨喜马拉雅山铁路线路方案的重要问题。基于上述各地块工程效应存在显著差异的认识,提出以构造划分作为铁路工程地质分区的建议,并以拟建中尼铁路交通廊道为例,绘制了工程地质分区图。研究有助于将造山带理论推进到工程应用层面,为铁路大范围方案比选阶段,广域、高效、低成本地获取信息提供了新途径。Abstract: The engineering effect of endogenic processes in Himalayan orogen is a frontier problem of basic scientific research in the field of geosciences and engineering. In the longitude direction, based on the tectonic and lithological differences, the Himalayan orogenic belt is divided into 3 parts: Tethys Himalaya, Higher Himalaya and Lesser Himalaya. These studies reveal the universal law that the engineering geological characteristics and disaster effects of the different parts are restricted by endogenic processes. This paper presents the following arguments. Firstly, the rapid uplift of Higher and Lesser Himalaya under the mechanism of compressional collision and orogeny, the earthquakes are mainly thrust fault type and have high earthquake intensity and high frequency. The dominant direction of geostress is close to NE-WS. The terrain develops to a large height difference. The river cuts strongly. The Mountain disaster is serious. Secondly, the Tethys Himalaya belongs to the detachment system and is in a relatively subsidence state. The earthquakes are mainly normal fault type. The seismicity is relatively weak. The geostress direction is close to the E-S. The terrain evolution is trending towards weakening the terrain. And the avalanche disaster is serious. Lastly, the marine glacial landforms, glacial lakes and glacial debris flows are unique to the Higher Himalaya. These may be important issues in controlling the trans-Himalayan railway line scheme. According to the understanding that there are significant differences in the engineering effects of the above parts, this paper puts forward the suggestion of taking the structural division as the railway engineering geological zoning. Taking the traffic corridor of the proposed China-Nepal railway as an example, the engineering geological zoning map is drawn. The research is helpful to advance the theory of Himalayan orogen to the level of engineering application. At the stage of railway large-scale scheme comparison and selection, it provides a new way to obtain information in wide area, high efficiency and low cost.
-
表 1 各地块地震类型占比
Table 1. Proportion of earthquake types in different blocks
地块 正断型/% 正断-走滑型/% 走滑型/% 逆冲型/% 逆冲-走滑型/% 特提斯喜马拉雅 45.5 9.1 40.9 0 0 高喜马拉雅 0 0 34.4 59.4 0 低喜马拉雅 4.0 0 28.0 64.0 4.0 表 2 各地块地震活动性参数
Table 2. Seismic activity parameters of different blocks
地块 地震数目 b值 v4 地震活动性排序 特提斯喜马拉雅 313 1.23 4.15 3 高喜马拉雅 651 1.05 9.18 1 低喜马拉雅 581 1.12 8.79 2 表 3 各地块地震能量密度
Table 3. Seismic energy density of different blocks
地块 面积/km2 总能量/面积/J·km-2 地震能量密度排序 特提斯喜马拉雅 244883.3 60841.67 3 高喜马拉雅 185251.6 430864.20 1 低喜马拉雅 96102.3 423588.49 2 表 4 各地块4级及以上震源深度
Table 4. Focal depths of earthquakes with 4 magnitude and above in different blocks
地块 平均震源深度/km < 20 km地震比例/% >20 km地震比例/% 震源深度排序 特提斯喜马拉雅 30.58 26.09 73.91 3 高喜马拉雅 28.19 35.71 64.29 2 低喜马拉雅 21.92 50.75 49.25 1 表 5 各地块地貌指标
Table 5. Landform indices of different blocks
地块 平均海拔/m 地形起伏度/m 地表切割深度/m 坡度/(°) 特提斯喜马拉雅 4785 647.6 292.9 16.5 高喜马拉雅 3394 1060.8 510.5 25.7 低喜马拉雅 1675 873.9 416.0 24.2 表 6 河流纵坡
Table 6. Longitudinal slopes of rivers
河流名称 河段地块 特提斯喜马拉雅 高喜马拉雅 低喜马拉雅 R1 0.0140 0.0233 0.0038 R2 0.0552 0.0632 0.0073 R3 0.0284 0.0319 0.0090 R4 0.0228 0.0088 0.0089 R5 0.0500 0.0350 0.0066 R6 0.0475 0.0344 0.0087 R7 0.0206 0.0351 0.0152 R8 0.0199 0.0551 0.0054 R9 0.0021 0.0228 0.0131 平均值 0.0289 0.0344 0.0087 表 7 各地块山地灾害的主要类型及发展趋势
Table 7. Main types and trend of mountain hazards in different blocks
地块 主要灾害 特殊灾害 灾害发展趋势 特提斯喜马拉雅 崩滑、滑坡 雪崩 平缓 高喜马拉雅 崩塌、滑坡、泥石流 冰川泥石流、冰湖溃决、雪崩 加剧 低喜马拉雅 滑坡、崩塌、降雨泥石流 — 增强 表 8 中尼铁路吉隆藏布廊道工程地质分区表
Table 8. Engineering geology zoning table of China-Nepal Railway along Gyirong river
工程地质分段范围及所属地块 地貌特征 地质构造 地层岩性 地震 气象及水文地质 地质灾害 主要工程地质问题 Ⅰ区:吉隆县—隆目特提斯喜马拉雅 高山峡谷区,地形较为陡峻,河流下切程度较强,河流纵坡较陡 构造活动表现为相对下降运动,水平地应力相对较小,主应力方向近东西向 砂岩、砂泥岩、白云岩、灰岩和页岩等沉积岩为主。岩体破裂程度相对较高 地震类型以正断型为主,属高烈度地震区 干旱寒冷气候区。主要接受大气降水和冰川融水补给,石灰岩和白云岩分布区存在岩溶裂隙水 崩塌、滑坡、雪崩 岩性复杂,对南北向的隧道工程,地应力方向与隧道轴线大角度相交,对隧道工程不利 Ⅱ区:隆目—Syabru Bensi高喜马拉雅 极高山峡谷区,地形极为陡峻,河流强烈下切,河流纵坡陡峻 构造活动表现为整体上升运动,水平地应力相对较大,主应力方向近北东向,岩体主要承受挤压应力 以片麻岩、花岗岩和片岩为主。岩体破裂程度相对较低 地震类型以逆冲型为主,地震活动强度大、频率高,对工程不利影响严重 温带气候区,海洋性冰川覆盖区。主要为大气降水和降雪,因地形起伏,切割深度大,一般无法形成大片的补给径流区,高山峡谷地形有利于排水,地下水不丰富 崩塌、滑坡、雪崩;冰川泥石流、冰湖溃决 地震活动性强;冰川泥石流、高地应力、高地温等都可能成为影响线路方案的控制性问题。对南北向的隧道工程,地应力方向与隧道轴线大角度相交,对隧道工程不利;岩石以硬岩为主,岩层受强烈的挤压作用,隧道工程需注意岩爆问题 Ⅲ-1区:SyabruBensi-Betrawati低喜马拉雅 中-高山峡谷区,地形陡峻,河流下切相对较弱,河流纵坡相对较缓 构造活动表现为整体上升运动,水平地应力相对中等,地应力方向近北东向,岩体主要承受挤压应力 页岩、泥岩、石英砂岩及其变质岩等堆积而成的混杂岩。岩体破裂程度相对中等 地震类型以逆冲型为主,地震活动强度大、频率高,对工程不利影响严重 温带至亚热带气候区。主要为大气降水,混杂岩地区构造裂隙含水层、风化带裂隙含水层发育 滑坡、崩塌、降雨泥石流 地震活动性强;高地应力、高地温都可能对隧道工程造成影响。对南北向的隧道工程,地应力方向与隧道轴线大角度相交,对隧道工程不利;软岩分布较多,隧道工程需注意围岩大变形问题 Ⅲ-2区:SyabruBensi-加德满都高喜马拉雅 同Ⅱ区 -
Brookfield M E. 1993. The Himalayan passive margin from Precambrian to Cretaceous times[J]. Sedimentary Geology, 84(1-4): 1-35. doi: 10.1016/0037-0738(93)90042-4 Burchfiel B C, Royden L H. 1985. North-south extension within the convergent Himalayan region[J]. Geology, 13(10): 679-682. doi: 10.1130/0091-7613(1985)13<679:NEWTCH>2.0.CO;2 Burchfield B C, Chen Z, Hodges K V, et al. 1992. The South Tibetan Detachement System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. Geological Society of America Special Paper, 269(1): 1-41. Burg J P, Chen G M. 1984. Tectonics and structural formation of southern Tibet, China[J]. Nature, 311(1): 219-223. doi: 10.1038-311219a0/ Chen P N, Gao L Q. 1987. Characteristics of horizontal stress distribution and their relation to seismicity[J]. Earthquake Research in China, 3 (S): 85-89. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD1987S1010.htm Ding L, Maksatbek S, Cai F L, et al. 2017. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences: 47(3)293-309. http://cn.bing.com/academic/profile?id=ca2f3e9c8b9b2f0427f9e845bbfedbda&encoded=0&v=paper_preview&mkt=zh-cn Gansser A. 1964. Geology of the Himalayas[M]. New York: Wiley Inter Science: 289. Gao M T. 2015. Seismic parameter zonation map of China(GB 18306-2015)[S]. Beijing: Standards Press of China. Godin L, Grujic D, Law R D, et al. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones[M]. London: Geological Society Special Publication, 268: 1-23. Gutenberg B, Richter C F. 1956. Magnitude and energy of earthquakes[J]. Annali di Geofisica, 9(1): 1-15. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e788e8839342702b331c76926f6e3f47 Harrion T M, Copeland P, Kidd W S, et al. 1992. Raising Tibet[J]. Science, 255(5052): 1663-1670. doi: 10.1126/science.255.5052.1663 Huang R Q, Qi S W. 2017. Engineering geology: Review and prospect of past ten years in China[J]. Journal of Engineering Geology, 25(2): 257-276. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201702001.htm Jackson M, Bilham R. 1994. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet[J]. Journal of Geophysical Research, 99 (B7): 13897-13912. doi: 10.1029/94JB00714 Lefort P. 1996. Evolution of the Himalaya, in the tectonics of Asia[M]. New York: Cambridge University Press: 95-106. Li J J, Wen S X, Zhang Q S, et al. 1979. A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang plateau[J]. Scientia Sinica, 22(11): 1314-1328. http://cn.bing.com/academic/profile?id=d6cd8087fc53e6d2d5000d389b9d8f7d&encoded=0&v=paper_preview&mkt=zh-cn Lin Z Y, Wu X D. 1981. Climatic regionalization of the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 36(1): 22-32. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201805011 Mogi K. 1962. Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena[J]. Bulletin of the Earthquake Research Institute, 40(1): 125-173. http://cn.bing.com/academic/profile?id=66c48dbfcafc5afa1a6c0114e96f2edd&encoded=0&v=paper_preview&mkt=zh-cn Peng J B. 2001. Theory-method system in study of dynamics of the regional stability[J]. Journal of Engineering Geology, 9(1): 3-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200101001 Peng J B. 2001. Fundamental principles for study on dynamics of regional stability[J]. Journal of Engineering Geology, 9(1): 12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200101002 Peng J B, Mao Y L, Fan Wen. 2001. Study of dynamics on regional stability[M]. Beijing: Science Press. Scheidegger A E. 1979. The principle of antagonism in the Earth's evolution[J]. Tectonophysics, 55:T7-10. doi: 10.1016/0040-1951(79)90177-X Scheidegger A E. 2004. Morphotectonics[M]. Springer: New York: 111-118. Shi Y F, Huang M H, Yao T D, et al. 2000. Glaciers and their environments in China[M]. Beijing: Science Press: 368-370. Tapponnie P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia[J]. Geological Society of London Special Publications, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07 The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences. 1983. Glaciers of Xizang(Tibet)[M]. Beijing: Science Press: 6-36. Wang S J. 2013. Century evolution of engineering geo-sciences and further prospect[J]. Journal of Engineering Geology, 21(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201301001 Xu Q. 2012. New development tendency of engineering geology in China—summary report of the 9th national congress of engineering geology[J]. Journal of Engineering Geology, 20(6): 1087-1095. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201206032.htm Xu Z Q, Wang Q, Zeng L S, et al. 2013. Three-dimensional extrusion model of the Great Himalaya slice[J]. Geology in China, 40(3): 671-680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201303002 Xu Z Q, Yang J S, Li H B, et al. 2007. Orogenic plateaux—Terrane amalgamation, collision and uplift in the Qinghai-Tibet Plateau[M]. Beijing: Geological Pubishing House: 259-263. Xu Z H. 1990. Current status and prospects of geostress[J]. Advances in Earth Science, (5): 27-34. Yao L K, Qiu Y L, Wei Y X. 2012. Challenges in construction of railway and highway from Sichuan to Tibet through eastern margin of Tibetan Plateau[J]. Journal of Southwest Jiaotong University, 47(5): 719-734. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201205001 Yu Q Y, Jiang Z Z, Ai N S. 1983. A new method for calculating water system direction data[J]. Journal of Lanzhou University, 19(3): 164-165. https://www.waters.com/webassets/cms/library/docs/local_seminar_presentations/DA_NUT2013_A4_Rune_Frederiksen.pdf Yao Z Y, Meng X L, Li X, et al. 2019. Research on engineering geological environment characteristics and engineering geological problems of China-Nepal cross-border railway[J]. Railway Standard Design, 63(7): 28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdbzsj201907006 Yang B C, Qin S Q, Xue L, et al. 2017. A physical self-similarity law describing the accelerated failure behavior of rocks[J]. Chinese Journal of Geophysics, 60(5): 1746-1760. Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 76(1-2): 1-131. doi: 10.1016/j.earscirev.2005.05.004 Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth Science Frontiers, 13(5): 416-515. http://cn.bing.com/academic/profile?id=d97a639a885daa59dbb70597092c75fb&encoded=0&v=paper_preview&mkt=zh-cn Zhang Y S, Qu Y X, Wu S R, et al. 2004. The research introduction of engineering geology in Qinling orogenic belt[J]. Journal of Engineering Geology, 12 (S): 44-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb2004z1009 陈彭年, 高莉青. 1987.地应力水平分布特征及其与地震的关系[J].中国地震, 3 (S): 85-89. http://www.cnki.com.cn/Article/CJFDTotal-ZGZD1987S1010.htm 高孟潭. 2015. 《中国地震动参数区划图》宣贯教材(GB 18306-2015)[S].北京: 中国标准出版社. 黄润秋, 祁生文. 2017.工程地质:十年回顾与展望[J].工程地质学报, 25(2): 257-276. doi: 10.13544/j.cnki.jeg.2017.02.001 林振耀, 吴祥定. 1981.青藏高原气候区划[J].地理学报, 36(1): 22-32. doi: 10.3321/j.issn:0375-5444.1981.01.003 彭建兵. 2001a.区域稳定动力学研究(一)理论与方法体系[J].工程地质学报, 9(1): 3-11. http://www.gcdz.org/article/id/9365 彭建兵. 2001b.区域稳定动力学研究(二)基本原则[J].工程地质学报, 9(1): 12-16. http://www.gcdz.org/article/id/9373 彭建兵, 毛彦龙, 范文. 2001.区域稳定动力学研究[M].北京:科学出版社: 78-89. 施雅风, 黄茂桓, 姚檀栋, 等. 2000.中国冰川与环境[M].北京:科学出版社: 368-370. 王思敬. 2013.工程地质学科的世纪演化与前景[J].工程地质学报, 21(1): 1-5. doi: 10.3969/j.issn.1004-9665.2013.01.001 许强. 2012.工程地质学科发展的新趋势-第九届全国工程地质大会学术总结[J].工程地质学报, 20(6): 1087-1095. doi: 10.3969/j.issn.1004-9665.2012.06.025 许志琴, 杨经绥, 李海兵, 等. 2007.造山的高原-青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社: 259-263. 许志琴, 王勤, 曾令森, 等. 2013.高喜马拉雅的三维挤出模式[J].中国地质, 40(3): 671-680. doi: 10.3969/j.issn.1000-3657.2013.03.002 许忠淮. 1990.地应力研究现状与展望[J].地球科学进展, (5): 27-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000303447 姚令侃, 邱燕玲, 魏永幸. 2012.青藏高原东缘进藏高等级道路面临的挑战[J].西南交通大学学报, 47(5): 719-734. doi: 10.3969/j.issn.0258-2724.2012.05.001 余庆余, 蒋柱中, 艾南山. 1983.水系方向资料计算的一种新方法[J].兰州大学学报(自然科学版), 19(3): 164-165. http://www.cnki.com.cn/Article/CJFDTotal-LDZK198303022.htm 姚志勇, 孟祥连, 李响, 等. 2019.中尼跨境铁路工程地质环境特征及主要工程地质问题研究[J].铁道标准设计, 63(7): 28-34. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201907006 杨百存, 秦四清, 薛雷, 等. 2017.岩石加速破裂行为的物理自相似律[J].地球物理学报, 60(5): 1746-1760. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201705012.htm 张永双, 曲永新, 吴树仁, 等. 2004.秦岭造山带工程地质研究导论[J].工程地质学报, 12(增刊): 44-49. http://www.gcdz.org/article/id/10691 中国科学院青藏高原综合科学考察队. 1983.西藏冰川[M].北京:科学出版社: 6-36. -