MECHANICAL BEHAVIOR OF CLAYEY SOIL TREATED BY NEW ONE-PHASE MICP TECHNIQUE
-
摘要: 微生物诱导碳酸钙沉积(MICP)是一种绿色低碳的新型土体改性技术。该技术当前主要适用于渗透性较好的砂土,普遍使用两相处理方法,即菌液和胶结液分开施用。然而,对于渗透性相对较差的黏性土,传统的两相处理方法难以适用。为此,引入新的单相胶结方法,即菌液和胶结液混合施用,通过调节溶液的初始pH值为细菌水解作用提供窗口期,避免微生物絮凝阻塞孔隙,使混合液均匀分布于土体一定深度范围内,从而达到显著提升胶结效果的目的。利用喷洒法将混合液喷洒至土体表层进行MICP处理,处理完成后使用超微型贯入仪SMP-1测试土体表层不同深度处的结构强度,分析土体力学特性的空间差异,对土体的胶结效果进行定量评价。此外,探究了胶结液浓度(0.2 M、0.5 M和1.0 M)及胶结方法(调节pH与否)对于土体结构强度及MICP改性效果的影响。结果表明:采用单相MICP技术对黏性土进行改性,能够显著提高其结构强度,具有较好的适用性;在不高于1.0 M的胶结液浓度范围内,黏性土的胶结效果随着胶结液浓度增加而提升;相比较而言,调节pH的单相胶结方法对于提升土体胶结的深度和均匀性有明显积极作用。新型单相MICP技术简单易行,能够节约成本,在黏性土表层加固方面具有潜在推广应用价值。Abstract: Microbially Induced Carbonate Precipitation (MICP) is a new kind of green and low-carbon soil modification technique. At present, this technique is mainly applicable to sandy soil with good permeability. A two-phase treatment method is commonly used, where the bacterial solution and the cementation solution are applied separately. However, for clayey soils with relatively poor permeability, the traditional two-phase treatment method is difficult to apply. Therefore, a new one-phase cementation method is introduced in this paper. It is a mixed application of bacterial solution and cementation solution. It provides a lag period for bacterial hydrolysis by adjusting the initial pH value of the solution, avoids microbial flocculation blocking the pore, makes the mixed solution evenly distributed in a certain depth range of soil, and thus significantly improves the cementation quality. The mixed liquid is sprayed to the surface of soil to have it treated by MICP. After the treatment, the initial structural strength of soil surface at different depths is tested by SMP-1. The spatial difference of soil mechanical properties is analyzed. The cementation quality of soil is quantitatively evaluated. In addition, the effects of cementation solution concentration (0.2 M, 0.5 M and 1.0 M) and cementation method (adjusting pH or not) on soil structural strength and MICP modification quality are investigated. The results show that the one-phase MICP technique can significantly improve the structural strength of clay and has good applicability. Within the range of cementation solution concentration not higher than 1.0M, the cementing effect of clay increases with the increase of cementation solution concentration. Comparatively the one-phase cementation method of adjusting pH can improve the depth and homogeneity of soil cementation proactively. One-phase MICP technique is simple and easy to implement, can save costs, and has potential application value on strengthening the surface of clayey soil.
-
Key words:
- MICP /
- Clayey soil /
- Penetration test /
- Structural strength /
- CaCO3 content /
- Soil erosion
-
表 1 下蜀土的基本物理性质指标
Table 1. Physical properties of Xiashu soil
比重
Gs塑限
ωP/%液限
ωL/%塑性指数
IP最大干密度
ρd/g·cm-3最优含水率
ωopt/%2.7 19.5 36.5 17.6 1.7 15.7 表 2 胶结方案
Table 2. Scheme for cementation
试样编号 胶结液浓度 胶结液+菌液用量 菌液pH A1 0.2 M 30 mL+30 mL pH=8.5 A2 0.2 M 30 mL+30 mL pH=5.0 B1 0.5 M 30 mL+30 mL pH=8.5 B2 0.5 M 30 mL+30 mL pH=5.0 C1 1.0 M 30 mL+30 mL pH=8.5 C2 1.0 M 30 mL+30 mL pH=5.0 D — 60mL水 — 表 3 pH和胶结液浓度对化学转化率的影响
Table 3. Effect of pH and cementation solution concentration on chemical conversion rate
胶结液浓度 0.5 M 1.0 M 2.0 M pH=3.0 无明显沉淀物 pH=4.0 无明显沉淀物 pH=5.0 74.6% 68.6% 无明显沉淀物 pH=8.5 76.0% 74.8% 50.8% -
Benini S, Rypniewski W R, Wilson K S, et al. 1999. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels[J]. Structure(London), 7(2): 205-216. Cardoso R, Pires Inês, Duarte S O D, et al. 2018. Effects of clay's chemical interactions on biocementation[J]. Applied Clay Science, 156: 96-103. doi: 10.1016/j.clay.2018.01.035 Cheng L, Shahin M A and Chu J. 2018. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 1-12. doi: 10.1007/s11440-018-0738-2 Cheng X H, Ma Q, Yang Z, et al. 2013. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 35(8): 1486-1495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201308014 Cheng X H, Yang Z, Li M, et al. 2015. Microbial modified geomaterials: a methodology review[J]. Industrial Construction, 45(7): 1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201507001 Chu J, Ivanov V, Stabnikov V and Li B. 2013. Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007 Cui M J, Zheng J J, Lai H J. 2017. Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and Soil Mechanics, 38(11): 3173-3178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201711012 Cui M J, Zheng J J, Zhang R J, et al. 2017. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9 Dejong J T, Fritzges M and Nusslein K. 2006. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381) Dejong J T, Mortensen B M, Martinez B C, et al. 2010. Bio-mediated soil improvement[J]. Ecological Engineering, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029 Dejong J T, Soga K, Kavazanjian E, et al. 2013. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[J]. Géotechnique, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017 Fang X W, Shen C N, Chu J, et al. 2015. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 36(10): 2773-2779. http://d.old.wanfangdata.com.cn/Periodical/ytlx201510005 Gong X P, Tang C S, Shi B, et al. 2019. Evolution of soil microstructure during drying and wetting[J]. Journal of Engineering Geology, 27(4): 775-793. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201904011 Harkes M P, Paassen L A V, Booster J L, et al. 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 36(2): 112-117. doi: 10.1016/j.ecoleng.2009.01.004 He J, Chu J, Liu H L, et al. 2016. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 38(4): 643-653. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604009 He J, Zhu Q, Gao Z L. 2013. The western crude oil pipeline engineering for prevention and control of soil and water loss in gansu province[J]. Journal of Capital Normal University(Natural Science Edition), 34(4): 81-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdsfdxxb-zr201304019 Jiang N J, Soga K, Kuo M. 2017. Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, P.04016100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a111b49365712c85806b58e47bbbe19 Lei T W, Tang Z J, Yu J, et al. 2010. Dynamic Process and Chemical Regulation Technology of Soil Erosion on Slope[M]. Beijing: Science Press. Liu H L, Xiao P, Xiao Y, et al. 2016. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 38(12): 32-37. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201801003 Liu L, Shen Y, Liu H L, et al. 2016. Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 37(12): 3410-3416. http://d.old.wanfangdata.com.cn/Periodical/ytlx201612009 Mitchell J K, Santamarina J C. 2005. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 131(10): 1222-1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222) Ng W S, Lee L M, Tan C K, et al. 2013. Improvements in engineering properties of soils through microbial-induced calcite precipitation[J]. KSCE Journal of Civil Engineering, 17(4): 718-728. doi: 10.1007/s12205-013-0149-8 Okwadha G D O, Li J. 2010. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 81(9): 1143-1148. doi: 10.1016/j.chemosphere.2010.09.066 Pei X J, Yang Q W, Xu Q, et al. 2016. Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2316-2327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201611016 Qabany A, Soga K. 2013. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 63(4): 331-339. doi: 10.1680/geot.SIP13.P.022 Qian C X, Wang A H, Wang X. 2015. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 36(6): 1537-1548. http://d.old.wanfangdata.com.cn/Periodical/ytlx201506003 Qian C X, Wang X, Yu X N. 2015. Research and application development of microbe cement[J]. Journal of Materials Engineering, 43(8): 92-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clgc201508015 Shahrokhi-Shahraki R, O"Kelly B C, Niazi A, et al. 2015. Improving sand with microbial-induced carbonate precipitation[J]. Proceedings of the ICE-Ground Improvement, 168(3): 217-230. doi: 10.1680/grim.14.00001 Shao G H, Hou M, Liu P. 2019. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 4(1): 128-134. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201901019 Shi B, Liu Z B, Cai Y. 2005. Development of the super mini-penetrometer and its application[J]. Rock and Soil Mechanics, 26(8): 1211-1215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200508031 Stocks-Fischer S, Galinat J K, Bang S S. 1999. Microbiological precipitation of CaCO3[J]. Soil Biology and Biochemistry, 31(11): 1563-1571. doi: 10.1016/S0038-0717(99)00082-6 Sun X H, Miao L, Tong T Z, et al. 2017. Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 38(11): 3225-3230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201711018 Tian W T, Hu W Y, Li J, et al. 2008. The status of soil and water loss and analysis of countermeasures in China[J]. Research of Soil and Water Conservation, 15(4): 204-209. http://en.cnki.com.cn/article_en/cjfdtotal-stby200804051.htm Wang D Y, Tang C S, Li J, et al. 2014. Super miniature penetration test on structural strength of clayey soil during evaporation[J]. Journal of Engineering Geology, 22(5): 818-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201405007 Wang Y, Shi B, Gao L, et al. 2010. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 18(3): 351-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201003010 Whiffin V S, van Paassen L A, Harkes M P. 2007. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology. Geomicrobiology Journal, 24(5):417-423. doi: 10.1080/01490450701436505 Whiffin V S. 2004. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University. http://www.researchgate.net/publication/43979958_Mi Xu D, Tang C S, Leng T, et al. 2018. Shear strength of unsaturated expansive soil during weting-drying cycles[J]. Earth Science Frontiers, 25(1): 286-296. http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXQY201801029.htm Yu J, Lei T W, Isaac Shainberg, et al. 2011. Effect of molecular weight and degree of hydrolysis of PAM on infiltration and erosion of sandy soil[J]. Acta Pedologica Sinica, 48(1): 21-27. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB201101002.htm Zhao Q. 2014. Experimental study on soil improvement using microbial induced calcite precipitation(MICP)[D]. Beijing: China University of Geosciences(Beijing). 程晓辉, 麻强, 杨钻, 等. 2013.微生物灌浆加固液化砂土地基的动力反应研究[J].岩土工程学报, 35(8): 1486-1495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201308014 程晓辉, 杨钻, 李萌, 等. 2015.岩土材料微生物改性的基本方法综述[J].工业建筑, 45(7): 1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201507001 崔明娟, 郑俊杰, 赖汉江. 2017.菌液注射方式对微生物固化砂土动力特性影响试验研究[J].岩土力学, 38(11): 3173-3178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201711012 方祥位, 申春妮, 楚剑, 等. 2015.微生物沉积碳酸钙固化珊瑚砂的试验研究[J].岩土力学, 36(10): 2773-2779. http://d.old.wanfangdata.com.cn/Periodical/ytlx201510005 巩学鹏, 唐朝生, 施斌, 等. 2019.黏性土干/湿过程中土结构演化特征研究进展[J].工程地质学报, 27(4): 775-793. doi: 10.13544/j.cnki.jeg.2018-246 何稼, 楚剑, 刘汉龙, 等. 2016.微生物岩土技术的研究进展[J].岩土工程学报, 38(4): 643-653. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604009 何静, 朱琦, 高照良. 2013.西部原油成品油管道工程甘肃段水土流失防治探讨[J].首都师范大学学报(自然科学版), 34(4): 81-87. http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr201304019 雷廷武, 唐泽军, 于健, 等. 2010.坡面土壤侵蚀动力过程与化学调控技术[M].北京:科学出版社. 刘汉龙, 肖鹏, 肖扬, 等. 2016. MICP胶结钙质砂动力特性试验研究[J].岩土工程学报, 38(12): 32-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201801003 刘璐, 沈扬, 刘汉龙, 等. 2016.微生物胶结在防治堤坝破坏中的应用研究[J].岩土力学, 37(12): 3410-3416. http://d.old.wanfangdata.com.cn/Periodical/ytlx201612009 裴向军, 杨晴雯, 许强, 等. 2016.改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J].岩石力学与工程学报, 35(11): 2316-2327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201611016 钱春香, 王安辉, 王欣. 2015.微生物灌浆加固土体研究进展[J].岩土力学, 36(6): 1537-1548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201506003 钱春香, 王欣, 於孝牛. 2015.微生物水泥研究与应用进展[J].材料工程, 43(8): 92-103. http://d.old.wanfangdata.com.cn/Periodical/clgc201508015 邵光辉, 侯敏, 刘鹏. 2019. MICP固化粉土细菌的分布和固定规律研究[J].林业工程学报, 4(1): 128-134. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201901019 施斌, 刘志彬, 蔡奕. 2005.超微型贯入仪的研制及其应用[J].岩土力学, 26(8): 1211-1215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200508031 孙潇昊, 缪林昌, 童天志, 等. 2017.微生物沉积碳酸钙固化砂土试验研究[J].岩土力学, 38(11): 3225-3230. http://d.old.wanfangdata.com.cn/Periodical/ytlx201711018 田卫堂, 胡维银, 李军, 等. 2008.我国水土流失现状和防治对策分析[J].水土保持研究, 15(4): 204-209. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200804051 王德银, 唐朝生, 李建, 等. 2014.基于超微型贯入试验的黏性土干燥过程中结构强度演化规律研究[J].工程地质学报, 22(5): 818-823. doi: 10.13544/j.cnki.jeg.2014.05.07 王媛, 施斌, 高磊, 等. 2010.黏性土渗透性温度效应实验研究[J].工程地质学报, 18(3): 351-356. http://www.gcdz.org/article/id/8562 徐丹, 唐朝生, 冷挺, 等. 2018.干湿循环对非饱和膨胀土抗剪强度影响的试验研究[J].地学前缘, 25(1): 286-296. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801023 于健, 雷廷武, Isaac S, 等. 2011. PAM特性对砂壤土入渗及土壤侵蚀的影响[J].土壤学报, 48(1): 21-27. http://d.old.wanfangdata.com.cn/Periodical/trxb201101003 赵茜. 2014.微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D].北京: 中国地质大学(北京). -