基于新型单相MICP技术改性黏性土力学特性的试验研究

张宽 唐朝生 刘博 张天生 程青 施斌

张宽, 唐朝生, 刘博, 等. 2020. 基于新型单相MICP技术改性黏性土力学特性的试验研究[J]. 工程地质学报, 28(2): 306-316. doi: 10.13544/j.cnki.jeg.2019-528
引用本文: 张宽, 唐朝生, 刘博, 等. 2020. 基于新型单相MICP技术改性黏性土力学特性的试验研究[J]. 工程地质学报, 28(2): 306-316. doi: 10.13544/j.cnki.jeg.2019-528
Zhang Kuan, Tang Chaosheng, Liu Bo, et al. 2020. Mechanical behavior of clayey soil treated by new one-phase MICP technique[J]. Journal of Engineering Geology, 28(2): 306-316. doi: 10.13544/j.cnki.jeg.2019-528
Citation: Zhang Kuan, Tang Chaosheng, Liu Bo, et al. 2020. Mechanical behavior of clayey soil treated by new one-phase MICP technique[J]. Journal of Engineering Geology, 28(2): 306-316. doi: 10.13544/j.cnki.jeg.2019-528

基于新型单相MICP技术改性黏性土力学特性的试验研究

doi: 10.13544/j.cnki.jeg.2019-528
基金项目: 

国家自然科学基金项目 41772280

江苏省自然科学基金项目 BK20170394

国家自然科学基金项目 41572246

国家自然科学基金项目 41925012

国家级大学生创新创业训练计划支持项目 G201810284114

中央高校基本科研业务费专项资金

江苏省自然科学基金项目 BK20171228

国家自然科学基金项目 41902271

详细信息
    作者简介:

    唐朝生(1980-),男,博士,教授,博士生导师,主要从事环境岩土工程和工程地质方面的教学和研究工作. E-mail: tangchaosheng@nju.edu.cn

  • 中图分类号: P642.3

MECHANICAL BEHAVIOR OF CLAYEY SOIL TREATED BY NEW ONE-PHASE MICP TECHNIQUE

Funds: 

the National Natural Science Foundation of China 41772280

Natural Science Foundation of Jiangsu Province BK20170394

the National Natural Science Foundation of China 41572246

the National Natural Science Foundation of China 41925012

the Project of the National Innovation and Entrepreneurship Training Program for Undergraduates G201810284114

Special Fund for Basic Scientific Research of Central Universities

Natural Science Foundation of Jiangsu Province BK20171228

the National Natural Science Foundation of China 41902271

  • 摘要: 微生物诱导碳酸钙沉积(MICP)是一种绿色低碳的新型土体改性技术。该技术当前主要适用于渗透性较好的砂土,普遍使用两相处理方法,即菌液和胶结液分开施用。然而,对于渗透性相对较差的黏性土,传统的两相处理方法难以适用。为此,引入新的单相胶结方法,即菌液和胶结液混合施用,通过调节溶液的初始pH值为细菌水解作用提供窗口期,避免微生物絮凝阻塞孔隙,使混合液均匀分布于土体一定深度范围内,从而达到显著提升胶结效果的目的。利用喷洒法将混合液喷洒至土体表层进行MICP处理,处理完成后使用超微型贯入仪SMP-1测试土体表层不同深度处的结构强度,分析土体力学特性的空间差异,对土体的胶结效果进行定量评价。此外,探究了胶结液浓度(0.2 M、0.5 M和1.0 M)及胶结方法(调节pH与否)对于土体结构强度及MICP改性效果的影响。结果表明:采用单相MICP技术对黏性土进行改性,能够显著提高其结构强度,具有较好的适用性;在不高于1.0 M的胶结液浓度范围内,黏性土的胶结效果随着胶结液浓度增加而提升;相比较而言,调节pH的单相胶结方法对于提升土体胶结的深度和均匀性有明显积极作用。新型单相MICP技术简单易行,能够节约成本,在黏性土表层加固方面具有潜在推广应用价值。
  • 图  1  试验流程

    Figure  1.  Schematic drawing of test procedure

    图  2  不同条件的混合液对比

    Figure  2.  Comparison of mixed liquids in different situations

    图  3  超微型贯入仪的组成

    Figure  3.  Buildup of SMP-1 super mini-penetrometer

    图  4  贯入过程示意图

    Figure  4.  Schematic drawing of penetration process

    图  5  不同初始pH混合液随时间变化图

    Figure  5.  Photos of mixed liquids of different initial pH varying with time

    图  6  土样贯入应力曲线(12轮胶结后)

    Figure  6.  The relationship between penetration stress and penetration depth for soil

    图  7  土样表面照片

    Figure  7.  Surface of Xiashu soil samples

    图  8  胶结轮数与平均贯入端应力的关系

    Figure  8.  The relationship between cementation times and average penetration stress

    图  9  不同深度处碳酸钙含量对比(12轮胶结后)

    Figure  9.  Calcite content for different depths

    表  1  下蜀土的基本物理性质指标

    Table  1.   Physical properties of Xiashu soil

    比重
    Gs
    塑限
    ωP/%
    液限
    ωL/%
    塑性指数
    IP
    最大干密度
    ρd/g·cm-3
    最优含水率
    ωopt/%
    2.719.536.517.61.715.7
    下载: 导出CSV

    表  2  胶结方案

    Table  2.   Scheme for cementation

    试样编号胶结液浓度胶结液+菌液用量菌液pH
    A10.2 M30 mL+30 mLpH=8.5
    A20.2 M30 mL+30 mLpH=5.0
    B10.5 M30 mL+30 mLpH=8.5
    B20.5 M30 mL+30 mLpH=5.0
    C11.0 M30 mL+30 mLpH=8.5
    C21.0 M30 mL+30 mLpH=5.0
    D60mL水
    下载: 导出CSV

    表  3  pH和胶结液浓度对化学转化率的影响

    Table  3.   Effect of pH and cementation solution concentration on chemical conversion rate

    胶结液浓度0.5 M1.0 M2.0 M
    pH=3.0无明显沉淀物
    pH=4.0无明显沉淀物
    pH=5.074.6%68.6%无明显沉淀物
    pH=8.576.0%74.8%50.8%
    下载: 导出CSV
  • Benini S, Rypniewski W R, Wilson K S, et al. 1999. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels[J]. Structure(London), 7(2): 205-216.
    Cardoso R, Pires Inês, Duarte S O D, et al. 2018. Effects of clay's chemical interactions on biocementation[J]. Applied Clay Science, 156: 96-103. doi: 10.1016/j.clay.2018.01.035
    Cheng L, Shahin M A and Chu J. 2018. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 1-12. doi: 10.1007/s11440-018-0738-2
    Cheng X H, Ma Q, Yang Z, et al. 2013. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 35(8): 1486-1495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201308014
    Cheng X H, Yang Z, Li M, et al. 2015. Microbial modified geomaterials: a methodology review[J]. Industrial Construction, 45(7): 1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201507001
    Chu J, Ivanov V, Stabnikov V and Li B. 2013. Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
    Cui M J, Zheng J J, Lai H J. 2017. Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and Soil Mechanics, 38(11): 3173-3178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201711012
    Cui M J, Zheng J J, Zhang R J, et al. 2017. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
    Dejong J T, Fritzges M and Nusslein K. 2006. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    Dejong J T, Mortensen B M, Martinez B C, et al. 2010. Bio-mediated soil improvement[J]. Ecological Engineering, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
    Dejong J T, Soga K, Kavazanjian E, et al. 2013. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[J]. Géotechnique, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
    Fang X W, Shen C N, Chu J, et al. 2015. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 36(10): 2773-2779. http://d.old.wanfangdata.com.cn/Periodical/ytlx201510005
    Gong X P, Tang C S, Shi B, et al. 2019. Evolution of soil microstructure during drying and wetting[J]. Journal of Engineering Geology, 27(4): 775-793. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201904011
    Harkes M P, Paassen L A V, Booster J L, et al. 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 36(2): 112-117. doi: 10.1016/j.ecoleng.2009.01.004
    He J, Chu J, Liu H L, et al. 2016. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 38(4): 643-653. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604009
    He J, Zhu Q, Gao Z L. 2013. The western crude oil pipeline engineering for prevention and control of soil and water loss in gansu province[J]. Journal of Capital Normal University(Natural Science Edition), 34(4): 81-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdsfdxxb-zr201304019
    Jiang N J, Soga K, Kuo M. 2017. Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, P.04016100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a111b49365712c85806b58e47bbbe19
    Lei T W, Tang Z J, Yu J, et al. 2010. Dynamic Process and Chemical Regulation Technology of Soil Erosion on Slope[M]. Beijing: Science Press.
    Liu H L, Xiao P, Xiao Y, et al. 2016. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 38(12): 32-37. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201801003
    Liu L, Shen Y, Liu H L, et al. 2016. Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 37(12): 3410-3416. http://d.old.wanfangdata.com.cn/Periodical/ytlx201612009
    Mitchell J K, Santamarina J C. 2005. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 131(10): 1222-1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
    Ng W S, Lee L M, Tan C K, et al. 2013. Improvements in engineering properties of soils through microbial-induced calcite precipitation[J]. KSCE Journal of Civil Engineering, 17(4): 718-728. doi: 10.1007/s12205-013-0149-8
    Okwadha G D O, Li J. 2010. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 81(9): 1143-1148. doi: 10.1016/j.chemosphere.2010.09.066
    Pei X J, Yang Q W, Xu Q, et al. 2016. Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2316-2327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201611016
    Qabany A, Soga K. 2013. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 63(4): 331-339. doi: 10.1680/geot.SIP13.P.022
    Qian C X, Wang A H, Wang X. 2015. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 36(6): 1537-1548. http://d.old.wanfangdata.com.cn/Periodical/ytlx201506003
    Qian C X, Wang X, Yu X N. 2015. Research and application development of microbe cement[J]. Journal of Materials Engineering, 43(8): 92-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clgc201508015
    Shahrokhi-Shahraki R, O"Kelly B C, Niazi A, et al. 2015. Improving sand with microbial-induced carbonate precipitation[J]. Proceedings of the ICE-Ground Improvement, 168(3): 217-230. doi: 10.1680/grim.14.00001
    Shao G H, Hou M, Liu P. 2019. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 4(1): 128-134. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201901019
    Shi B, Liu Z B, Cai Y. 2005. Development of the super mini-penetrometer and its application[J]. Rock and Soil Mechanics, 26(8): 1211-1215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200508031
    Stocks-Fischer S, Galinat J K, Bang S S. 1999. Microbiological precipitation of CaCO3[J]. Soil Biology and Biochemistry, 31(11): 1563-1571. doi: 10.1016/S0038-0717(99)00082-6
    Sun X H, Miao L, Tong T Z, et al. 2017. Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 38(11): 3225-3230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201711018
    Tian W T, Hu W Y, Li J, et al. 2008. The status of soil and water loss and analysis of countermeasures in China[J]. Research of Soil and Water Conservation, 15(4): 204-209. http://en.cnki.com.cn/article_en/cjfdtotal-stby200804051.htm
    Wang D Y, Tang C S, Li J, et al. 2014. Super miniature penetration test on structural strength of clayey soil during evaporation[J]. Journal of Engineering Geology, 22(5): 818-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201405007
    Wang Y, Shi B, Gao L, et al. 2010. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 18(3): 351-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201003010
    Whiffin V S, van Paassen L A, Harkes M P. 2007. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology. Geomicrobiology Journal, 24(5):417-423. doi: 10.1080/01490450701436505
    Whiffin V S. 2004. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University. http://www.researchgate.net/publication/43979958_Mi
    Xu D, Tang C S, Leng T, et al. 2018. Shear strength of unsaturated expansive soil during weting-drying cycles[J]. Earth Science Frontiers, 25(1): 286-296. http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXQY201801029.htm
    Yu J, Lei T W, Isaac Shainberg, et al. 2011. Effect of molecular weight and degree of hydrolysis of PAM on infiltration and erosion of sandy soil[J]. Acta Pedologica Sinica, 48(1): 21-27. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB201101002.htm
    Zhao Q. 2014. Experimental study on soil improvement using microbial induced calcite precipitation(MICP)[D]. Beijing: China University of Geosciences(Beijing).
    程晓辉, 麻强, 杨钻, 等. 2013.微生物灌浆加固液化砂土地基的动力反应研究[J].岩土工程学报, 35(8): 1486-1495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201308014
    程晓辉, 杨钻, 李萌, 等. 2015.岩土材料微生物改性的基本方法综述[J].工业建筑, 45(7): 1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201507001
    崔明娟, 郑俊杰, 赖汉江. 2017.菌液注射方式对微生物固化砂土动力特性影响试验研究[J].岩土力学, 38(11): 3173-3178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201711012
    方祥位, 申春妮, 楚剑, 等. 2015.微生物沉积碳酸钙固化珊瑚砂的试验研究[J].岩土力学, 36(10): 2773-2779. http://d.old.wanfangdata.com.cn/Periodical/ytlx201510005
    巩学鹏, 唐朝生, 施斌, 等. 2019.黏性土干/湿过程中土结构演化特征研究进展[J].工程地质学报, 27(4): 775-793. doi: 10.13544/j.cnki.jeg.2018-246
    何稼, 楚剑, 刘汉龙, 等. 2016.微生物岩土技术的研究进展[J].岩土工程学报, 38(4): 643-653. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604009
    何静, 朱琦, 高照良. 2013.西部原油成品油管道工程甘肃段水土流失防治探讨[J].首都师范大学学报(自然科学版), 34(4): 81-87. http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr201304019
    雷廷武, 唐泽军, 于健, 等. 2010.坡面土壤侵蚀动力过程与化学调控技术[M].北京:科学出版社.
    刘汉龙, 肖鹏, 肖扬, 等. 2016. MICP胶结钙质砂动力特性试验研究[J].岩土工程学报, 38(12): 32-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201801003
    刘璐, 沈扬, 刘汉龙, 等. 2016.微生物胶结在防治堤坝破坏中的应用研究[J].岩土力学, 37(12): 3410-3416. http://d.old.wanfangdata.com.cn/Periodical/ytlx201612009
    裴向军, 杨晴雯, 许强, 等. 2016.改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J].岩石力学与工程学报, 35(11): 2316-2327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201611016
    钱春香, 王安辉, 王欣. 2015.微生物灌浆加固土体研究进展[J].岩土力学, 36(6): 1537-1548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201506003
    钱春香, 王欣, 於孝牛. 2015.微生物水泥研究与应用进展[J].材料工程, 43(8): 92-103. http://d.old.wanfangdata.com.cn/Periodical/clgc201508015
    邵光辉, 侯敏, 刘鹏. 2019. MICP固化粉土细菌的分布和固定规律研究[J].林业工程学报, 4(1): 128-134. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201901019
    施斌, 刘志彬, 蔡奕. 2005.超微型贯入仪的研制及其应用[J].岩土力学, 26(8): 1211-1215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200508031
    孙潇昊, 缪林昌, 童天志, 等. 2017.微生物沉积碳酸钙固化砂土试验研究[J].岩土力学, 38(11): 3225-3230. http://d.old.wanfangdata.com.cn/Periodical/ytlx201711018
    田卫堂, 胡维银, 李军, 等. 2008.我国水土流失现状和防治对策分析[J].水土保持研究, 15(4): 204-209. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200804051
    王德银, 唐朝生, 李建, 等. 2014.基于超微型贯入试验的黏性土干燥过程中结构强度演化规律研究[J].工程地质学报, 22(5): 818-823. doi: 10.13544/j.cnki.jeg.2014.05.07
    王媛, 施斌, 高磊, 等. 2010.黏性土渗透性温度效应实验研究[J].工程地质学报, 18(3): 351-356. http://www.gcdz.org/article/id/8562
    徐丹, 唐朝生, 冷挺, 等. 2018.干湿循环对非饱和膨胀土抗剪强度影响的试验研究[J].地学前缘, 25(1): 286-296. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801023
    于健, 雷廷武, Isaac S, 等. 2011. PAM特性对砂壤土入渗及土壤侵蚀的影响[J].土壤学报, 48(1): 21-27. http://d.old.wanfangdata.com.cn/Periodical/trxb201101003
    赵茜. 2014.微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D].北京: 中国地质大学(北京).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2042
  • HTML全文浏览量:  530
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 修回日期:  2020-02-22
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回