基于拼缝有效开度的盾构隧道渗流量及衬砌等效渗透系数计算

关振长 缑小东 王涛 蒋宇静

关振长,缑小东,王涛,等. 2021. 基于拼缝有效开度的盾构隧道渗流量及衬砌等效渗透系数计算[J]. 工程地质学报,29(1):256-263. doi:10.13544/j.cnki.jeg.2019-538 doi: 10.13544/j.cnki.jeg.2019-538
引用本文: 关振长,缑小东,王涛,等. 2021. 基于拼缝有效开度的盾构隧道渗流量及衬砌等效渗透系数计算[J]. 工程地质学报,29(1):256-263. doi:10.13544/j.cnki.jeg.2019-538 doi: 10.13544/j.cnki.jeg.2019-538
Guan Zhenchang, Gou Xiaodong, Wang Tao, et al. 2021. Seepage discharge and equivalent permeability coefficient of shield tunnel based on joint effective opening[J]. Journal of Engineering Geology, 29(1): 256-263. doi: 10.13544/j.cnki.jeg.2019-538
Citation: Guan Zhenchang, Gou Xiaodong, Wang Tao, et al. 2021. Seepage discharge and equivalent permeability coefficient of shield tunnel based on joint effective opening[J]. Journal of Engineering Geology, 29(1): 256-263. doi: 10.13544/j.cnki.jeg.2019-538

基于拼缝有效开度的盾构隧道渗流量及衬砌等效渗透系数计算

doi: 10.13544/j.cnki.jeg.2019-538
基金项目: 

国家自然科学基金 51678155

福州市科技局市校科技合作项目 2019-G-45

详细信息
    作者简介:

    关振长(1980-),男,博士,教授,博士生导师,主要从事隧道与地下工程方面的科研与教学工作. E-mail: gaussto@hotmail.com

  • 中图分类号: U457

SEEPAGE DISCHARGE AND EQUIVALENT PERMEABILITY COEFFICIENT OF SHIELD TUNNEL BASED ON JOINT EFFECTIVE OPENING

Funds: 

the National Natural Science Foundation of China 51678155

Fuzhou Science and Technology Promotion Project 2019-G-45

  • 摘要: 拼缝渗漏水是盾构隧道最常见的病害表现形式,对衬砌的服役性能有重要影响。在前人研究成果的基础上,提出基于防水密封垫失效的拼缝有效开度假定,进而推导出基于拼缝有效开度的盾构隧道渗流量及衬砌等效渗透系数的实用计算公式。以国内较为通用的常规断面盾构隧道为例,利用上述实用公式估算其渗流量,并与基于块体离散元的数值模拟结果相互验证。再以3种不同几何形态的盾构隧道为原型,完成了135种不同工况下的渗流计算,探讨了有效开度、衬砌外水压及衬砌几何形态,对盾构隧道渗流量及衬砌等效渗透系数的影响。结果表明:拼缝有效开度对渗流量及等效渗透系数的影响十分显著,未考虑拼缝间密封垫失效的传统计算方法可能高估了盾构隧道衬砌的防水性能。本文所述实用计算公式,具有表达清晰、计算简便的特点,可为盾构隧道衬砌的防水设计及后续服役性能评价提供定性和定量的参考。
  • 图  1  错缝拼装盾构隧道的衬砌弯矩示意图

    Figure  1.  Diagram of lining bending moment for the stagger assembled shield tunnel

    图  2  盾构隧道渗流计算的三维数值模型

    Figure  2.  Three dimensional numerical model for the seepage calcualtion of shield tunnel

    图  3  盾构隧道衬砌拼缝上的水压分布图

    Figure  3.  Water pressure distribution on the joint of shield tunnel lining

    图  4  拼缝有效开度与渗流量的关系

    Figure  4.  Relationship between joint effective opening and seapage discharge

    图  5  衬砌外水压与流量的关系

    Figure  5.  Relationship between water pressure and seepage discharge

    图  6  衬砌几何形态与渗流量的关系

    Figure  6.  Relationship between lining geometry and seepage discharge

    图  7  拼缝有效开度与等效渗透系数的关系

    Figure  7.  Relationship between joint effective opening and equivalent permeability

    表  1  盾构隧道衬砌力学及渗流参数

    Table  1.   Mechanical and seepage parameters for shield tunnel lining

    流体参数 流体体积模量Kf/Pa 3.8e5
    流体密度ρf/kg·m-3 1000
    流体黏度μ/Pa·s 1e-3
    力学参数 节理法向刚度kn/Pa·m-1 1e10
    节理切向刚度ks/Pa·m-1 1e10
    衬砌密度ρb/kg·m-3 2500
    衬砌体剪切模量G/Pa 2e9
    衬砌体积模量Kb/Pa 5e9
    下载: 导出CSV
  • Chen Y Y, Zhang J W, Ma S W, et al. 2019. Waterproof failure mode and improvement for sealing gasket of shield tunnel segment[J]. Tunnel Construction, 39(6): 946-952.
    Dong L W, Jiang Y S, Yang Z Y, et al. 2017. Experimental study and water-resistant mechanism of gaskets in joints of tunnel segments[J]. Chinese Journal of Geotechnical Engineering, 39(3): 469-474.
    Fan X Y, Jia Z X, Bai X L, et al. 2019. Classification of extremely soft rock tunnels using comprehensive evaluation model of entropy-weighted fuzzy[J]. Journal of Engineering Geology, 27(6): 1236-1243.
    Gao J S. 2014. Study on highway tunnel water leakage mechanisms and countermeasures[D]. Changsha: Central South University.
    Gong C J, Ding W Q, Soga K, et al. 2019. Failure mechanism of joint waterproofing in precast segmental tunnel linings[J]. Tunnelling and Underground Space Technology, 84: 334-352. doi: 10.1016/j.tust.2018.11.003
    Gong C J, Ding W Q. 2018. Waterproof properties of elastic sealing gaskets used in segmental joints of large-diameter underwater shield tunnels: design methodology and engineering guidance[J]. Tunnel Construction, 38(10): 1712-1722.
    Guo X J, Huang T, Xiao Z L, et al. 2008. Fuzzy theory based prediction of water in flow into a very long tunnel along shitai railway[J]. Journal of Engineering Geology, 16(2): 255-257.
    He C, Zeng D Y. 2015. Influence of shield tunnel structure design and construction on environment[M]. Chengdu: Southwest Jiaotong University Press.
    Li T B, He Y F, Fu X. 2019. Dynamic risk assessment method and application of large deformation of high ground stress tunnel during construction period[J]. Journal of Engineering Geology, 27(1): 29-37.
    Li X, Zhou S H, Di H G, et al. 2018. Evaluation and experimental study on the sealant behaviour of double gaskets for shield tunnel lining[J]. Tunnelling and Underground Space Technology, 75: 81-89. doi: 10.1016/j.tust.2018.02.004
    Liu X Z. 2018. Subway tunnel safety protection and countermeasures[M]. Shanghai: Tongji University Press.
    Liu Y, Zhao C P, Lai X L. 2013. Research on groundwater inflow and distribution of pore water pressure of shallow tunnel in water-rich region[J]. Journal of Shenyang Jianzhu University(Natural Science), 29(1): 23-29.
    Ma F H, Gao G Y. 2019. Calculation method of water pressure and seepage flow for subsea tunnel[J]. Science Technology and Engineering, 19(18): 290-295.
    Shi C H, Cao C Y, Lei M F, et al. 2015. Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints[J]. Tunnelling and Underground Space Technology, 50: 490-498. doi: 10.1016/j.tust.2015.09.004
    Shi C, Zhu W J, Zheng W T. 2016. Block discrete element numerical simulation technology and engineering application[M]. Beijing: China Architecture Publishing & Media Co. , Ltd.
    Su K, Chen R, Zhou Y F, et al. 2017. Analytical method for calculating the groundwater inflow of circular tunnel and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 36(S1): 3332-3341.
    Sun W L. 2016. Shield tunnel structure behavior under external load[D]. Hangzhou: Zhejiang University.
    Wang H G. 2018. Study on influence of different leakage conditions on strata and shield tunnel[D]. Nanning: Guangxi University.
    Wang J H, Han X, Zhang H L. 2013. Effect of urban metro operation on groundwater environment[J]. Journal of Engineering Geology, 21(3): 408-415.
    Wang J, Yuan D J, Jin D L, et al. 2019. Calculation model for loosening earth pressure of a shield tunnel based on the influence of steady seepage[J]. Journal of Tianjin University(Science and Technology), 52(S1): 92-98.
    Wang Z. 2015. Numerical study on waterproof failure mechanism of elastic sealing gasket of underwater shield bored tunnel[J]. Tunnel Construction, 35(11): 1164-1168.
    Wu J, Zhou Z F, Li M W, et al. 2019. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology, 27(4): 890-902.
    Yang C, Shen S L, Hou D W, et al. 2018. Material properties of the seal gasket for shield tunnels: a review[J]. Construction and Building Materials, 191: 877-890. doi: 10.1016/j.conbuildmat.2018.10.021
    Zheng G, Yao J, Dai X, et al. 2018. Experimental study on sand inflow under different opening widths of shield tunnel segments[J]. Chinese Journal of Geotechnical Engineering, 40(6): 969-977.
    Zhu M Q, Ding W Q, Jin Y L, et al. 2017. Experimental study of segment joint sealing gasket forms of deep drainage shield tunnel in shanghai under high water pressure[J]. Tunnel Construction, 37(10): 1303-1308.
    陈云尧, 张军伟, 马士伟, 等. 2019. 盾构隧道管片密封垫防水失效模式及改善研究[J]. 隧道建设(中英文), 39(6): 946-952. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201906011.htm
    董林伟, 江玉生, 杨志勇, 等. 2017. 隧道管片接缝密封垫防水机理及试验研究[J]. 岩土工程学报, 39(3): 469-474. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703014.htm
    范新宇, 贾志献, 白雪亮, 等. 2019. 熵权模糊综合评价模型在极软岩隧洞围岩分级中的应用[J]. 工程地质学报, 27(6): 1236-1243. doi: 10.13544/j.cnki.jeg.2018-310
    高劲松. 2014. 公路隧道渗漏水病害发生机理及对策研究[D]. 长沙: 中南大学.
    龚琛杰, 丁文其. 2018. 大直径水下盾构隧道接缝弹性密封垫防水性能研究: 设计方法与工程指导[J]. 隧道建设(中英文), 38(10): 1712-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201810023.htm
    郭旭晶, 黄涛, 肖再亮, 等. 2008. 石太客运专线特长隧道涌水灾害预测研究[J]. 工程地质学报, 16(2): 255-257. doi: 10.3969/j.issn.1004-9665.2008.02.020
    何川, 曾东洋. 2015. 盾构隧道结构设计及施工对环境的影响[M]. 成都: 西南交通大学出版社.
    李天斌, 何怡帆, 付弦. 2019. 高地应力隧道施工期大变形动态风险评估方法及应用[J]. 工程地质学报, 27(1): 29-37. doi: 10.13544/j.cnki.jeg.2019-015
    刘学增. 2019. 地铁隧道安全保护与对策[M]. 上海: 同济大学出版社.
    刘印, 赵昌朋, 赖小玲. 2013. 浅埋隧道渗流量及孔压分布规律——以富水地区为例[J]. 沈阳建筑大学学报(自然科学版), 29(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201301006.htm
    麻凤海, 高冠一. 2019. 隧道过海段水压力及渗流量计算方法[J]. 科学技术与工程, 19(18): 290-295. doi: 10.3969/j.issn.1671-1815.2019.18.044
    石崇, 诸卫江, 郑文堂. 2016. 块体离散元数值模拟技术及工程应用[M]. 北京: 中国建筑工业出版社.
    苏凯, 陈锐, 周亚峰, 等. 2017. 圆形隧洞渗流量计算的解析方法及其应用[J]. 岩石力学与工程学报, 36(S1): 3332-3341. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1024.htm
    孙廉威. 2016. 外界荷载作用下已建盾构隧道结构性状[D]. 杭州: 浙江大学.
    王洪刚. 2018. 盾构隧道不同渗漏条件对地层及隧道的影响研究[D]. 南宁: 广西大学.
    王将, 袁大军, 金大龙, 等. 2019. 稳态渗流条件下盾构隧道松动土压力计算模型研究[J]. 天津大学学报(自然科学与工程技术版), 52(S1): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX2019S1014.htm
    王军辉, 韩煊, 周宏磊. 2013. 城市地铁运营期间对地下水环境影响分析[J]. 工程地质学报, 21(3): 408-415. doi: 10.3969/j.issn.1004-9665.2013.03.011
    王湛. 2015. 水下盾构隧道弹性密封垫防水失效数值模拟研究[J]. 隧道建设, 35(11): 1164-1168. doi: 10.3973/j.issn.1672-741X.2015.11.008
    吴建, 周志芳, 李鸣威, 等. 2019. 隧洞涌水量预测计算方法研究进展[J]. 工程地质学报, 27(4): 890-902. doi: 10.13544/j.cnki.jeg.2018-245
    郑刚, 姚杰, 戴轩, 等. 2018. 不同管片张开量下隧道外水土流失规律试验研究[J]. 岩土工程学报, 40(6): 969-977. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806002.htm
    朱洺嵚, 丁文其, 金跃郎, 等. 2017. 上海市高水压深层排水盾构隧道管片接缝密封垫形式试验研究[J]. 隧道建设, 37(10): 1303-1308. doi: 10.3973/j.issn.1672-741X.2017.10.014
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  85
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-05-13
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回