张严 朱武 赵超英 韩炳权

张严, 朱武, 赵超英, 等. 2021. 佛山地铁塌陷InSAR时序监测及机理分析[J]. 工程地质学报, 29(4): 1167-1177. doi: 10.13544/j.cnki.jeg.2019-557
引用本文: 张严, 朱武, 赵超英, 等. 2021. 佛山地铁塌陷InSAR时序监测及机理分析[J]. 工程地质学报, 29(4): 1167-1177. doi: 10.13544/j.cnki.jeg.2019-557
Zhang Yan, Zhu Wu, Zhao Chaoying, et al. 2021. Moniting and inversion of Foshan metro collapse with multi-temporal InSAR and field investigation[J]. Journal of Engineering Geology, 29(4): 1167-1177. doi: 10.13544/j.cnki.jeg.2019-557
Citation: Zhang Yan, Zhu Wu, Zhao Chaoying, et al. 2021. Moniting and inversion of Foshan metro collapse with multi-temporal InSAR and field investigation[J]. Journal of Engineering Geology, 29(4): 1167-1177. doi: 10.13544/j.cnki.jeg.2019-557


doi: 10.13544/j.cnki.jeg.2019-557

国家自然科学基金 41941019

国家自然科学基金 42074040

国家重点研发计划 2020YFC1512001

国家重点研发计划 2019YFC1509802


    张严(1994-),女,硕士生,主要从事InSAR方面的科研工作. E-mail:


    朱武(1982-),男,博士,教授,博士生导师,主要从事InSAR方面的科研和教学工作. E-mail:

  • 中图分类号: P236



by National Natural Science Foundation of China 41941019

by National Natural Science Foundation of China 42074040

National Key R&D Program of China 2020YFC1512001

National Key R&D Program of China 2019YFC1509802

  • 摘要: 2018年2月7日,位于广东省佛山市禅城区的地铁2号线在盾构施工中发生塌陷事故,造成11人死亡、1人失踪、8人受伤,直接经济损失超过5000万元。为深入分析此次事故成因,本文基于自2017年3月~2019年1月期间的56景Sentinel-1A数据,利用SBAS-InSAR技术获取了研究区的时空形变信息。结果发现塌陷区及其附近区域在监测期间存在持续的地面沉降,形变速率达到30 mm·a-1以上。通过对事发地的实地调查和形变特征分析,并结合当地地质资料推测了塌陷形成的机理:供水管道下方的软土存在不均匀沉降,使水管产生裂缝导致管道内水外渗,进而致使还未达到胶装凝固点的管片产生裂缝,最终引起隧道和地面坍塌。研究结果可以为今后盾构施工中塌陷的监测和预警工作提供理论依据。
  • 图  1  研究区及Sentinel-1A数据覆盖范围示意图

    Figure  1.  Schematic diagram of the research area and Sentinel-1A data coverage area

    图  2  禅城区第四系沉积物等厚线图(改自易守勇等,2007)

    Figure  2.  Isopach map of Quaternary sediment in Chancheng district

    图  3  禅城区软土分布等厚线图(改自易守勇等,2007)

    Figure  3.  Isopach map of soft soil distribution in Chancheng district

    图  4  塌陷事故现场图(改自张爱军等,2018)

    Figure  4.  Map of collapse accident site

    图  5  地质剖面图(改自易守勇等,2007)

    Figure  5.  Geological section map

    图  6  时空基线分布图

    Figure  6.  Temporal and perpendicular baseline distribution

    图  7  年平均形变速率图

    Figure  7.  Annual land subsidence rate map

    图  8  塌陷坑附近区域年平均速率图

    Figure  8.  Annual land subsidence rate map of the area near the collapse pit

    图  9  P点形变时间序列图

    Figure  9.  The time-series of point P

    图  10  剖线AB沿线的沉降量

    Figure  10.  Deformation along line AB

    图  11  野外实地调查照片

    Figure  11.  Field survey photos

    图  12  塌陷机理分析示意图(改自易守勇等,2007)

    Figure  12.  Schematic diagram of collapse mechanism

    图  13  小型塌陷事故现场图

    Figure  13.  Map of minor collapse accident site

    表  1  Sentinel-1A数据参数

    Table  1.   Parameters of Sentinel-1A

    影像获取时间 影像数量 极化方式 升/降轨
    2017-03-12~2019-01-25 56景 VH+VV 升轨
    下载: 导出CSV
  • Alex N,Wang H,Dai Y W,et al. 2018. InSAR reveals land deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data[J]. Remote Sensing, 10(6): 813. doi: 10.3390/rs10060813
    Bamler R, Hartl P. 1998. Synthetic Aperture Radar Interferometry[J]. Inverse Problems, 14(4): R1-R54. doi: 10.1088/0266-5611/14/4/001
    Baer G, Schattner U, Wachs D, et al. 2002. The lowest place on earth is subsiding-an InSAR(Interferometric Synthetic Aperture Radar) perspective[J]. Geological Society of America Bulletin, 114(1): 12-23. doi: 10.1130/0016-7606(2002)114<0012:TLPOEI>2.0.CO;2
    Berardino P, Fornaro G, Lanari R, et al. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383. doi: 10.1109/TGRS.2002.803792
    Buttrick D B, Trollip N Y G, Watermeyer R B, et al. 2011. A performance based approach to dolomite risk management[J]. Environmental Earth Sciences, 64(4): 1127-1138. doi: 10.1007/s12665-011-0929-8
    Chen Y Q. 1988. Deformation observation data processing[M]. Beijing: Surveying and Mapping Press.
    Closson D, Karaki N A, Hansen H, et al. 2003. Space-borne radar interferometric mapping of precursory deformations of a dyke collapse, Dead Sea Area, Jordan[J]. International Journal of Remote Sensing, 24(4): 843-849. doi: 10.1080/01431160210147388
    Closson D, Karaki N A, Klinger Y, et al. 2005. Subsidence and sinkhole hazard assessment in the Southern Dead Sea Area, Jordan[J]. Pure & Applied Geophysics, 162(2): 221-248. doi: 10.1007/s00024-004-2598-y
    Chang L, Hanssen R F. 2014. Detection of cavity migration and sinkhole risk using radar interferometric time series[J]. Remote Sensing of Environment, 147(9): 56-64.
    Galloway D L, Jones D R, Ingebritsen S E. 1999. Land subsidence in the United States[J]. Center for Integrated Data Analytics Wisconsin Science Center, usgs circ. 1182.
    Gutiérrez F, Guerrero J, Lucha P. 2008. A Genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain[J]. Environmental Geology, 53(5): 993-1006. doi: 10.1007/s00254-007-0727-5
    Intrieri E, Gigli G, Nocentini M, et al. 2015. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application[J]. Geomorphology, 241(241): 304-314.
    Jia S M, Wang H G, Luo Y, et al. 2007. The impacts of ground subsidence on urban construction in Beijing[J]. Urban Geology, 2(4): 19-23.
    Jones C E, Blom R G. 2014. Sinkhole: precursory deformation measured by radar interferometry[J]. Geology, 42(2): 111-114. doi: 10.1130/G34972.1
    Jones C E, Blom R G. 2015. Pre-event and post-formation ground movement associated with the Bayou corne sinkhole[C]//Sinkhole Conference. [S.L. ]: [s. n. ].
    Kim J W, Lu Z, Degrandpre K. 2016. Ongoing deformation of sinkhole in Wink, Texas, observed by time-series sentinel-1A SAR Interferometry(Preliminary Results)[J]. Remote Sensing, 8(4): 313. doi: 10.3390/rs8040313
    Liu Q, Yue G S, Ding X B, et al. 2019. Temporal and spatial characteristics analysis of deformation along Foshan subway ssing time series InSAR[J]. Geomatics and Information Science of Wuhan University, 44(7): 1099-1106.
    Lan H X, Meng Y S, Zhang Y X. 2019. Spatiotemporal evolution analysis of land subsidence in Fuzhou city under the influence of complex factors[J]. Journal of Engineering Geology, 27(6): 1350-1361.
    Mao X P, Wu C L, Shi X M, et al. 2016. In-situ investigation on causes of road surface sinking at Haitai district of Tianjin Hi-Tech industrial park[J]. Journal of Engineering Geology, 24(2): 299-308.
    Nisio S, Caramanna G, Ciotoli G. 2007. Sinkholes in Italy: first results on the inventory and analysis[J]. Geological Society, London, Special Publications, 279(1): 23-45. doi: 10.1144/SP279.4
    Nof R N, Baer G, Ziv A, et al. 2013. Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry[J]. Geology, 41(9): 1019-1022. doi: 10.1130/G34505.1
    Parise M. 2012. A present risk from past activities: sinkhole occurrence above underground quarries[J]. Carbonates & Evaporites, 27(2): 109-118. doi: 10.1007/s13146-012-0088-3
    Qin C, Liu S Y, Du G Y, et al. 2019. Model tests on mass carbonation stabilization of mucky soil[J]. Journal of Engineering Geology, 27(6): 1302-1310.
    Theron A, Engelbrecht J, Kemp J, et al. 2016. Detection of sinkhole precursors through SAR Interferometry: First results from South Africa[C]//Geoscience and Remote Sensing Symposium. IEEE, [S.L. ]: [s. n. ]: 5398-5401.
    Vaccari A, Stuecheli M, Bruckno B, et al. 2013. Detection of geophysical features in InSAR point cloud data sets using spatiotemporal models[J]. International Journal of Remote Sensing, 34(22): 8215-8234. doi: 10.1080/01431161.2013.833357
    Wang M W, Chen Y, Sun Y N. 2008. Geological disaster investigation and evaluation[M]. Beijing: Geological Press.
    Yi S Y, Luo X Y, Cai R J, et al. 2007. Results of Foshan urban geological survey project[R]. Foshan: Foshan Geological Bureau of Guangdong province.
    Zhang W R, Duan Z L, Zeng Z Q, et al. 2002. Feature of Shanghai land subsidence and its damage to social-economic system[J]. Journal of Tongji University(Natural Science), 30 (9): 1129-1133, 1151.
    Zhao C Z, Gong G P, Wang H. 2006. Causes and formation and harm of the land subsidence[J]. Western-China Exploration Engineering, (1): 261-263.
    Zhang A J. 2018. Investigation report of "2.7" flood and collapse major accident in phase I project of line 2 of Foshan rail transit, Guangdong Province[R]. Guangzhou: Guangdong provincial Government.
    陈永奇. 1988. 变形观测数据处理[M]. 北京: 测绘出版社.
    贾三满, 王海刚, 罗勇, 等. 2007. 北京市地面沉降发展及对城市建设的影响[J]. 城市地质, 2(4): 19-23. doi: 10.3969/j.issn.1007-1903.2007.04.005
    刘琦, 岳国森, 丁孝兵, 等. 2019. 佛山地铁沿线时序InSAR形变时空特征分析[J]. 武汉大学学报(信息科学版), 44(7): 1099-1106.
    兰恒星, 孟云闪, 仉义星. 2019. 复杂因素影响下的福州市地面沉降时空演化分析[J]. 工程地质学报, 27(6): 1350-1361. doi: 10.13544/j.cnki.jeg.2018-268
    毛小平, 吴冲龙, 师学明. 2016. 天津高新技术产业园区海泰小区路面塌陷成因[J]. 工程地质学报, 24(2): 299-308. doi: 10.13544/j.cnki.jeg.2016.02.017
    秦川, 刘松玉, 杜广印, 等. 2019. 淤泥质土的整体碳化固化模型试验研究[J]. 工程地质学报, 27(6): 1302-1310. doi: 10.13544/j.cnki.jeg.2018-324
    王明伟, 陈冶, 孙永年. 2008. 地质灾害调查与评价[M]. 北京: 地质出版社.
    易守勇, 罗锡宜, 蔡柔君, 等. 2007. 佛山城市地质调查项目成果资料[R]. 佛山: 广东省佛山地质局.
    张维然, 段正梁, 曾正强, 等. 2002. 上海市地面沉降特征及对社会经济发展的危害[J]. 同济大学学报(自然科学版), 30 (9): 1129-1133, 1151. doi: 10.3321/j.issn:0253-374X.2002.09.022
    赵常洲, 龚固培, 王晖. 2006. 地面沉降成因与危害[J]. 西部探矿工程, (1): 261-263. doi: 10.3969/j.issn.1004-5716.2006.01.119
    张爱军. 2018. 广东省佛山市轨道交通2号线一期工程"2 ·7"透水坍塌重大事故调查报告[R]. 广州: 广东省省政府.
  • 加载中
图(13) / 表(1)
  • 文章访问数:  92
  • HTML全文浏览量:  25
  • PDF下载量:  41
  • 被引次数: 0
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-04-21
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03