PREDICTION AND PREVENTION OF SEEPAGE FAILURE IN INTERLAYER STAGGERED ZONE AT LEFT BANK OF BAIHETAN HYDROPOWER STATION
-
摘要: 金沙江白鹤滩水电工程坝区发育有数条规模较大的、对工程有直接影响的玄武岩层间错动带。错动带内充填碎屑夹泥,当大坝建成蓄水之后,在高水头差下容易发生渗透破坏,可能影响坝区水工建筑物运行的安全和稳定。针对厂坝区的地形地貌、地质结构、大坝水工建筑物和防渗排水系统的设计布置特点,建立了坝区左岸三维有限元精细模型。并采用插值拟合的方法确定特定断面边界的地下水位,计算模拟了运行期白鹤滩电站左岸坝区渗流场的变化规律和水力梯度场的分布,并结合在现场开展的错动带的渗透破坏试验数据,确定了错动带的允许水力梯度,评价错动带内渗透破坏的可能性。研究结果表明:现有的渗控措施在坝区形成了明显的降落漏斗,地下厂区防渗排水系统效果良好,渗压得到了有效控制。然而C2错动带内部分区域的水力梯度超过允许水力梯度,可能会发生渗透破坏。提出设置截渗洞和加强帷幕的防治措施,并模拟验证了这一措施可以较好地截断渗漏通道,保障厂房安全稳定运行。Abstract: The interlayer staggered zones in the basalt are widely distributed in the Baihetan hydropower project area in Jinsha River Basin, China. They are filled with gravel, debris, and mud. The mud is easy to be destructed. After water impoundment, the seepage gradient in the interlayer staggered zones would increase with the effects of the high water head difference and seepage control measures. Seepage failure can happen in the zones. We establish a 3D finite element fine model of the left bank of the dam area. We use a method of interpolation from different sections to determine water distribution in mountain boundary without observation data. The results show that the existing seepage control measures have effectively control the seepage pressure. The hydraulic gradient in some areas of the interlayer shear weakness zones C2 is greater than the allowable gradient, and seepage failure can happen in these areas. The seepage-prevention hole and the reinforced curtain are effective preventions to decrease gradient, which can block reservoir water better. Moreover, the preventions can block the reservoir water to some extent when the curtain locally fails, which can ensure the seepage stability around the underground powerhouse.
-
表 1 左岸渗透系数分区取值表
Table 1. Values of seepage coefficient of the left bank
材料编号 岩层或结构面 产状 渗透系数/cm·s-1 渗透张量/cm·s-1 1 P2β2杏仁状、斜斑,隐晶质玄武岩 / 5.80×10-7 $\left[ {\begin{array}{*{20}{c}} {5.80}&0&0\\ 0&{5.80}&0\\ 0&0&{5.80} \end{array}} \right] \times {10^{ - 7}}$ 2 C2层间错动带 N35°E,SE∠15°~25° 2.96×10-4 $\left[ {\begin{array}{*{20}{c}} {2.85}&{0.16}&{0.55}\\ {0.16}&{2.73}&{ - 0.78}\\ {0.55}&{ - 0.78}&{0.35} \end{array}} \right] \times {10^{ - 4}}$ 3 P2β31-P2β32柱状节理玄武岩 / 1.16×10-5 $\left[ {\begin{array}{*{20}{c}} {1.16}&0&0\\ 0&{1.16}&0\\ 0&0&{1.16} \end{array}} \right] \times {10^{ - 5}}$ 4 LS331层内错动带 N47°E,SE∠16° 5.50×10-4 $\left[ {\begin{array}{*{20}{c}} {5.26}&{0.24}&{1.09}\\ {0.24}&{5.26}&{ - 1.09}\\ {1.09}&{ - 1.09}&{0.47} \end{array}} \right] \times {10^{ - 4}}$ 5 P2β33-P2β34斜斑玄武岩 / 1.56×10-5 $\left[ {\begin{array}{*{20}{c}} {1.56}&0&0\\ 0&{1.56}&0\\ 0&0&{1.56} \end{array}} \right] \times {10^{ - 5}}$ 6 C3-1层间错动带 N44°~55°E,SE∠13°~17° 2.30×10-4 $\left[ {\begin{array}{*{20}{c}} {2.21}&{0.10}&{0.44}\\ {0.10}&{2.19}&{ - 0.47}\\ {0.44}&{ - 0.47}&{0.20} \end{array}} \right] \times {10^{ - 4}}$ 7 P2β35杏仁少斑玄武岩和斜斑玄武岩互层 / 1.55×10-5 $\left[ {\begin{array}{*{20}{c}} {1.55}&0&0\\ 0&{1.55}&0\\ 0&0&{1.55} \end{array}} \right] \times {10^{ - 5}}$ 8 C3层间错动带 N35°~50°E,SE∠15°~20° 2.30×10-4 $\left[ {\begin{array}{*{20}{c}} {2.17}&{0.13}&{0.50}\\ {0.13}&{2.16}&{ - 0.54}\\ {0.50}&{ - 0.54}&{0.27} \end{array}} \right] \times {10^{ - 4}}$ 9 P2β4下部斜斑和杏仁状玄武岩 / 3.92×10-5 $\left[ {\begin{array}{*{20}{c}} {3.92}&0&0\\ 0&{3.92}&0\\ 0&0&{3.92} \end{array}} \right] \times {10^{ - 5}}$ 10 LS337层内错动带 N35°~40°E,SE∠20°~30° 6.00×10-4 $\left[ {\begin{array}{*{20}{c}} {5.61}&{0.52}&{1.38}\\ {0.52}&{5.32}&{ - 1.84}\\ {1.38}&{ - 1.84}&{1.07} \end{array}} \right] \times {10^{ - 4}}$ 11 F13断层破碎带 N60°~65°W,SW∠85°~90° 2.31×10-5 $\left[ {\begin{array}{*{20}{c}} {0.91}&{0.98}&{ - 0.56}\\ {0.98}&{1.62}&{0.39}\\ { - 0.56}&{0.39}&{2.09} \end{array}} \right] \times {10^{ - 5}}$ 12 F17断层破碎带 N25°~45°E,NW∠65°~80° 5.79×10-5 $\left[ {\begin{array}{*{20}{c}} {0.48}&{ - 0.93}&{0.07}\\ { - 0.93}&{1.83}&{0.04}\\ {0.07}&{0.04}&{2.31} \end{array}} \right] \times {10^{ - 5}}$ 13 大坝混凝土 / 1.00×10-9 $\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right] \times {10^{ - 9}}$ 14 防渗帷幕 / 1.00×10-7 $\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right] \times {10^{ - 7}}$ 表 2 左岸代表断面山体边界处地下水位汇总表
Table 2. Calculated values of the groundwater level in mountain boundary
位置 上游断面 勘IX3 勘I1 勘I3 下游断面 距离/m 0 962 1117 1171 2600 地下水位/m 882 740 775 830 862 表 3 C2错动带非线性系数b计算表(m=0.5)
Table 3. Calculation results of non-linear coefficient b of the interlayer staggered zone C2 (m=0.5)
试验孔CZK51-3 观测孔非线性系数b/s2·cm-2 压力
/MPaQ
/cm3·s-1CZK51-1 CZK51-2 CZK51-0 CZK51-4 0.3 1.50 8.18×102 8.57×102 1.04×102 5.42×102 0.5 22.83 4.30×102 3.65×102 4.44×102 2.31×102 0.7 133.33 2.67×102 2.11×102 2.56×102 1.33×102 1.0 190.00 3.26×102 2.52×102 3.06×102 1.59×102 备注 稳定值 r=447 cm
M=67.5 cmr=500 cm
M=32.5 cmr=400 cm
M=37.5 cmr=1000 cm
M=27.5cm -
Chen M, Zhou Z F, Zhao L, et al. 2018. Study of the scale effect on permeability in the interlayer shear weakness zone using sequential indicator simulation and sequential gaussian simulation[J]. Water, 10(6): 779. doi: 10.3390/w10060779 Chen Y F, Lu L S, Zhou C B, et al. 2007. Application of the variational inequality approach of Signorini type to an engineering seepage problem[J]. Rock and Soil Mechanics, 28 (S1): 178-182. http://cn.bing.com/academic/profile?id=291597732974c71bc3c3c4b7ceaf8ffa&encoded=0&v=paper_preview&mkt=zh-cn Cheng P, Wan X B, Fang D, et al. 2018. Study on seepage control measures for interlayer staggered zone for underground powerhouse of Baihetan Hydropower Station[J]. Water Resources and Hydropower Engineering, 49(12): 65-71. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201812009 Chu-Agor M L, Fox G A, Cancienne R M, et al. 2008. Seepage caused tension failures and erosion undercutting of hillslopes[J]. Journal of Hydrology, 359(3-4): 247-259. doi: 10.1016/j.jhydrol.2008.07.005 Desai C S, Li G C. 1983. A residual flow procedure and application for free surface flow in porous media[J]. Advances in Water Resources, 6(1): 27-35. doi: 10.1016/0309-1708(83)90076-3 Faulkner D R, Lewis A C, Rutter E H. 2003. On the internal structure and mechanics of large strike-slip fault zones field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics, 367(3-4): 235-251. doi: 10.1016/S0040-1951(03)00134-3 Gao P, Wang G J, Chen Y G. 2019. Engineering application and shear strength parameter estimation of stratified rock mass with shear zone[J]. Journal of Engineering Geology, 27 (S): 257-261. Ji E Y, Chen S S, Fu Z Z, et al. 2018. Numerical simulation of crest cracks in an earth core rockfill dam using extended finite element method[J]. Chinese Journal of Geotechnical Engineering, 40 (S2): 17-21. Li T, Xu N W, Dai F, et al. 2018. Stability analysis of left bank abutment slope at Baihetan hydropower station subjected to excavation[J]. Rock and Soil Mechanics, 39(2): 665-674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201802032 Meng G T, Fan Y L, Jiang Y L, et al. 2016. Key rock mechanical problems and measures for huge caverns of Baihetan hydropower plant[J]. Chinese Journal of Rock Mechanics and Engineering, 35(12): 2549-2560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201612019 Meng X R, Pei X J, Huang R Q, et al. 2018. Shear behaviors of rock mass in the interlayer fault zone of Daguangbao landslide[J]. Journal of Engineering Geology, 26(2): 309-318. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201802004 Peng T B. 2011. Handbook of hydropower engineering geology[M]. Beijing: China Water & Power Press. Wibberley C A J, Yielding G, Toro G D. 2008. Recent advances in the understanding of fault zone internal structure: a review[J]. Geological Society London Special Publications, 299(1): 5-33. doi: 10.1144/SP299.2 Xiong P H, Lu J J, Jiang Y L, et al. 2017. Seepage intercepting structure of underground powerhouse of hydropower station: China, CN205894027U[P]. 2017-01-18. Xu D, Feng X, Cui Y, Jiang Q. 2015. Use of the equivalent continuum approach to model the behavior of a rock mass containing an interlayer shear weakness zone in an underground cavern excavation[J]. Tunneling and Underground Space Technology, 47 : 35-51. doi: 10.1016/j.tust.2014.12.006 Xu D, Feng X, Cui Y. 2012. A simple shear strength model for interlayer shear weakness zone[J]. Engineering Geology, 147 : 114-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c37969ab5023b0e04430f6178320146d Xu D, Feng X, Cui Y. 2013. An experimental study on the shear strength behaviour of an interlayered shear weakness zone[J]. Bulletin of Engineering Geology and the Environment, 72(3-4): 327-338. doi: 10.1007/s10064-013-0479-2 Xu D P, Feng X T, Cui Y J, et al. 2012. Shear behaviors of interlayer staggered zone at Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (S1): 2692-2703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2012z1013 Zhang Q F, Wu Z R. 2005. The improved cut-off negative pressure method for unsteady seepage flow with free surface[J]. Chinese Journal of Geotechnical Engineering, 27(1): 48-54. http://cn.bing.com/academic/profile?id=d6f6910b784aebca092fd4024a2048ef&encoded=0&v=paper_preview&mkt=zh-cn Zhang Y T, Chen P, Wang L. 1988. Initial flow method for seepage analysis with free surface[J]. Journal of Hydraulic Engineering, (8): 18-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201401026 Zheng H, Liu D F, Lee C F, et al. 2005. A new formulation of Signorini's type for seepage problems with free surfaces[J]. International Journal for Numerical Methods in Engineering, 64(1): 1-16. doi: 10.1002/nme.1345 Zhou Z F. 2007. Theory on dynamics of fluids in fractured medium[M]. Beijing: Higher Education Press. Zhou Z F, Li S J, Wang Z, et al. 2020. Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 42(3): 430-437. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb202003005 Zhu L, Pei X J, Cui S H, et al. 2018. Triaxial tests for dynamic characteristics of the bedding fault material within basal layer of Daguangbao landslide[J]. Journal of Engineering Geology, 26(3): 647-654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201803012 陈益峰, 卢礼顺, 周创兵, 等. 2007. Signorini型变分不等式方法在实际工程渗流问题中的应用[J].岩土力学, 28 (S1): 178-182. http://d.old.wanfangdata.com.cn/Conference/6471884 程普, 万祥兵, 方丹, 等. 2018.白鹤滩水电站地下厂房层间错动带渗流控制措施研究[J].水利水电技术, 49(12): 65-71. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201812009 高平, 王贵军, 陈艳国. 2019.含剪切带层状岩体抗剪强度参数估算及工程应用[J].工程地质学报, 27(增): 257-261. doi: 10.13544/j.cnki.jeg.2019099 吉恩跃, 陈生水, 傅中志, 等. 2018.土心墙堆石坝坝顶裂缝扩展有限元模拟[J].岩土工程学报, 40 (S2): 17-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb2018z2006 李韬, 徐奴文, 戴峰, 等. 2018.白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J].岩土力学, 39(2): 665-674. http://d.old.wanfangdata.com.cn/Periodical/ytlx201802032 孟国涛, 樊义林, 江亚丽, 等. 2016.白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J].岩石力学与工程学报, 35(12): 2549-2560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201612019 孟祥瑞, 裴向军, 黄润秋, 等. 2018.大光包滑坡层间错动带岩体剪切特性研究[J].工程地质学报, 26(2): 309-318. doi: 10.13544/j.cnki.jeg.2016-562 彭土标. 2011.水力发电工程地质手册[M].北京:中国水利水电出版社. 熊平华, 陆健健, 江亚丽, 等. 2017.水电站地下厂房的截渗结构: 中国, CN205894027U[P]. 2017-01-18. 徐鼎平, 冯夏庭, 崔玉军, 等. 2012.白鹤滩水电站层间错动带的剪切特性[J].岩石力学与工程学报, 31 (S1): 2692-2703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2012z1013 张乾飞, 吴中如. 2005.有自由面非稳定渗流分析的改进截止负压法[J].岩土工程学报, 27(1): 48-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200501007 张有天, 陈平, 王镭. 1988.有自由面渗流分析的初流量法[J].水利学报, (8): 18-26. 周志芳, 李思佳, 王哲, 等. 2020.白鹤滩水电站错动带非线性渗透参数的原位试验确定[J].岩土工程学报, 42(3): 430-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb202003005 周志芳. 2007.裂隙介质水动力学原理[M].北京:高等教育出版社. 朱凌, 裴向军, 崔圣华, 等2018.基于动三轴试验的大光包滑坡层间错动带动力特性研究[J].工程地质学报, 26 (3): 647-654. doi: 10.13544/j.cnki.jeg.2017-225 -