RAPID TOPOGRAPHIC MEASUREMENT AND THREE-DIMENSIONAL NUMERICAL MODELING METHOD FOR HIGH-STEEP/UPRIGHT SLOPES BASED ON AERIAL PHOTOGRAPHY OF UAV
-
摘要: 对复杂地形的高陡/直立边坡的地形测量及三维数值模型的建立一直是地质工作者面临的难题。近年来,无人机由于其形体小巧、机动性强以及可以获取高分辨率影像的特性在地质调查中受到了广泛的应用。本文基于低空无人机倾斜摄影技术,借助Agisoft Photoscan三维实景建模软件和基于逆向工程的Geomagic Studio强大的点云数据处理功能,结合南方CASS的地形制图功能对复杂地形的高陡/直立边坡实现快速地形成图。并利用Geomagic Studio的CAD曲面建模功能,重构复杂地形的高陡/直立边坡闭合CAD曲面模型,再通过Hypermesh强大的几何处理及网格划分能力,对CAD曲面模型进行模型切割并网格化,实现复杂地形的高陡/直立边坡的精细三维数值模型的建立,最后转化为FLAC3D可识别的文件格式进行计算分析。本文选择了浙江省神仙居景区飞天瀑景点作为实例研究,结果表明,无人机的使用使复杂地形的高陡/直立边坡实现了快速高效且精确的地形成图和三维建模。该方法具有简单实用、快速便捷且实用性强的优点。Abstract: The topographic measurement of high-steep to upright slopes of complex terrain and the establishment of three-dimensional numerical models have always been puzzling geologists. In recent years, the unmanned aerial vehicle(UAV)has been widely used in geological surveys due to its small size, maneuverability, and the ability to acquire high-resolution images. This paper focuses on a new measuring and modeling method for high-steep/upright slopes with integration of UAV and many software. Firstly, on the basis of low-altitude UAV tilt photography, the Agisoft Photoscan 3D real scene modeling software and reverse engineering-based Geomagic Studio's powerful point cloud data processing function, we generate the topographic maps of high-steep/upright slope with complex terrain quickly, combine with the topographic mapping function of CASS. Subsequently, the high-steep/upright slope closed CAD surface models of complex terrain are reconstructed utilizing the CAD surface modeling function of Geomagic Studio. Then we take the advantages of the powerful geometric processing and meshing ability of Hypermesh to mesh the CAD surface models, before establishing a fine three-dimensional(3D)numerical model for high-steep/upright slopes of complex terrain. Finally, the 3D numerical model is converted into a file recognizable by FLAC3D for calculation and analysis. In order to illustrate this method in details, we take the Feitian Waterfall Scenic Spot in Shenxianju Scenic Spot in Zhejiang Province as an example. The results indicate that the use of UAV enables fast, efficient and accurate mapping and 3D modeling of high-steep/upright slopes in complex terrain. The method has the advantages of being simple and practical, fast and convenient, and strong practicality.
-
Key words:
- UAV /
- Complex terrain /
- High-steep slope /
- Rapid mapping /
- 3D modeling
-
表 1 飞天瀑落石统计表
Table 1. Feitian waterfall rockfall statistics
堆积体区域 落石编号 尺寸 形状 数量统计/块 上方 LS1 1.5×1.5×0.3 m3 方形 1 LS2 4.0×4.0×2.5 m3 方形 1 LS3 2.0×2.0×2.0 m3 方形 1 LS4 0.1×0.1×0.05 m3 方形 小碎石,铺满近2 m2 下方 LS5 4.5×0.5×0.4 m3 方形 1 LS6 1.6×1.2×0.8 m3 方形 1 LS7 1.5×1.0×0.5 m3 方形 1 LS8 1.5×1.1×0.7 m3 方形 1 LS9 1.2×1.8×0.9 m3 方形 1 LS10 1.5×0.8×0.2 m3 方形 1 LS11 3.2×1.3×1.0 m3 方形 3 缓冲区 LS12 1.5×1.5×1.5 m3 方形 18 LS13 3.0×3.0×3.0 m3 方形 5 LS14 0.5×0.5×0.5m3 方形 56 -
3D Systems, Inc. 2019. Geomagic Free trial version[CP].https://cn.3dsystems.com/ Altair Engineering, Inc. 2019. Hypermesh Free trial version[CP].https://www.altairhyperworks.com.cn/product/HyperMesh Brunier G, Fleury J, Anthony E J, et al. 2016. Close-range airborne Structure-from -Motion Photogrammetry for high-resolution beach morphometric surveys:Examples from an embayed rotating beach[J]. Geomorphology, 261:76-88. doi: 10.1016/j.geomorph.2016.02.025 Cai S X. 2016. Research on UAV aerial photogrammetry technology process[J]. Science and Technology Innovation Herald(Aerospace science and technology), (17):7-8. http://d.old.wanfangdata.com.cn/Periodical/zhonggtdkx201801010 Chen Z X, Ye X, Zhang W B, et al. 2019. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles[J]. China Earthquake Engineering Journal, 41(1):257-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201901037 Colomina I, Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 92:79-97. doi: 10.1016/j.isprsjprs.2014.02.013 Deng X L, Li L H. 2017. Refined modeling of complex geological body based on three-dimensional laser scanning technique[J]. Journal of Engineering Geology, 25(1):209-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701027 Dong X J, Huang R Q. 2006. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (S2):3629-3635. http://cn.bing.com/academic/profile?id=8083087177bff231fbee92d143c8b3c0&encoded=0&v=paper_preview&mkt=zh-cn Dong X J. 2007. The three dimensional laser scanning technique and research on its engineering application[D]. Chengdu: Chengdu University of Technology. Ferreira E, Chandler J, Wackrow R, et al. 2017. Automated extraction of free surface topography using SfM-MVS photogrammetry[J]. Flow Measurement and Instrumentation, 54:243-249. doi: 10.1016/j.flowmeasinst.2017.02.001 Huang J, Shi Y C, Ji F, et al. 2013. Discussion on the application of 3-D laser scanning technology to the investigation of high slop perilous rockmass[J]. Journal of Yangtze River Scientific Research Institute, 30(11):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201311010 Huang R Q, Xu Q, Tao L J. 2002. Process simulation and control study of geologic hazards[M]. Beijing:Science Press:81-91. Huang R Q, Xu Q. 1999. The simulation and control in the process of geological disaster-based on the geological hazard evaluation of deformation theory and the theoretical outline of the design govemance[J]. Science Development, 9(12S):1273-1279. Jiang Y, Yan J, Chen S J. 2013. Application of 3D laser scanning technology in mining slope geological survey[J]. Nonferrous Metals(Mining Section), 65(5):96-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-ks201305023 Li Q, Qin Y Z, Li H Y. 2006. Study on the application of 3D laser scanning technology in subsidence monitoring[J]. Coal Engineering, (4):97-99. Li T. 2019. Precision analysis of UAV based on RTK/PPK technology in large scale topographic mapping[J]. Geomatics & Spatial Information Technology, 42(3):166-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201903046 Lin H Y, Huang H F, Lü Y M, et al. 2016. Micro-UAV based remote sensing method for monitoring landslides in three gorges reservoir, China[C]//Inst Elect & Elect Engineers, et al. IEEE International Symposium on Geoscience and Remote Sensing IGARSS.[S.L.]: IEEE: 4944-4947. Liu C J, Zhang S F, Ding L Q, et al. 2012. Identification of dangerous rock mass of high slope and study of anchoring method based on laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 31(10):2139-2146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201210020 Liu H Y, Wang X L, Li L H, et al. 2017. Application of UAV aerial photogrammetry for rockfall disaster survey[J]. Journal of Engineering Geology, 25 (S):82-87. Liu W L, Zhao X P. 2009. Study on the application of 3D laser scanning technology in landslide monitoring[J]. Metal Mine, (2):131-133. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSKS200902038.htm Manconi A, Ziegler M, Blöchliger T, et al. 2019. Technical note:optimization of unmanned aerial vehicles flight planning in steep terrains[J]. International Journal of Remote Sensing, 40(7):2483-2492. doi: 10.1080/01431161.2019.1573334 Sun J J, Wang X L, Chen Z G, et al. 2017. Characteristics of rock mass structure and prediction of rock mass behavior of high-steep slope[J]. Journal of Engineering Geology, 25 (S):407-414. Wang H J, Deng J L, Luo X Q, et al. 2017. Mapping of road-slope based on low-altitude photogrammetry by using multi-rotor UAV[J]. Geotechnical Investigation & Surveying, (12):45-49, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gckc201712009 Wang X, Chen W, Wang R S, et al. 2010. Discussion on the application prospect of low-altitude UAV remote sensing technology in water conservancy related fields[J]. Zhejiang Hydrotechnics, (6):27-29. Westoby M J, Brasington J, Glasser N F, et al. 2012. 'Structure-from -Motion' photogrammetry:A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314. doi: 10.1016/j.geomorph.2012.08.021 Xu J J, Wang H C, Luo Y Z, et al. 2010. Deformation monitoring and data processing of landslide based on 3D laser scanning[J]. Rock and Soil Mechanics, 31 (7):2188-2191, 2196. http://cn.bing.com/academic/profile?id=617cc691ef9fade15a3c5edc32ffd607&encoded=0&v=paper_preview&mkt=zh-cn Xu Z H, Wu L X, Chen S J, et al. 2016. Method of Engineering Volume Monitoring and Calculation for Open-Pit Mine from UAV Images[J]. Journal of Northeastern University(Natural Science), 37 (1):84-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbdxxb201601018 Yang Z X, Tian J, Zhou H Y. 2019. Application of UAV aerophotogrammetry technique in 1:2000 topographic surveying of some reservoir area[J]. Geospatial Information, 17(3):13. http://en.cnki.com.cn/Article_en/CJFDTotal-DXKJ201903002.htm Zhang H. 2014. Analysis of application technology of UAV in surveying and mapping engineering[J]. Silicon Valley, (16):127-128. http://d.old.wanfangdata.com.cn/Periodical/dzcs201912054 Zhang Q Q. 2018. An application of light drone in interpretation of dangerous rock mass[J]. China's Manganese Industry, 36(5):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201805006 Zhao M Y, Wang F Y, Wang M C, et al. 2018. Rock mass discontinuity acquisition based on photogrammetry of UAV[J]. Journal of Engineering Geology, 26 (S):480-487. Zhejiang Bureau of Geology and Mineral Resources. 1989. Regional Geology of Zhejiang Province[M]. Beijing:Geological Publishing House. Zhou G Y, Shi C F, Sun J. 2019. Research on topographic mapping methods of UAV slope photography[J]. Beijing Surveying and Mapping, 33(1):76-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjch201901017 Zhou X J, Hu Z B, Qiao X. 2019. The application of unmanned aerial vehicle oblique photography technique in large scale topographic mapping[J]. Urban Geotechnical Investigation & Surveying, (1):63-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cskc201901015 蔡舒翔. 2016.无人机航空摄影测量技术流程研究[J].科技创新导报(航空航天科学技术), (17):7-8. http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201617004 陈宙翔, 叶咸, 张文波, 等. 2019.基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J].地震工程学报, 41(1):257-267. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb201901037 邓小龙, 李丽慧. 2017.基于三维激光扫描技术的复杂三维地质体建模方法[J].工程地质学报, 25(1):209-217. http://www.gcdz.org/CN/abstract/abstract12342.shtml 董秀军, 黄润秋. 2006.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报, 25(增2):3629-3635. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z2046 董秀军. 2007.三维激光扫描技术及其工程应用研究[D].成都: 成都理工大学. www.ecice06.com/CN/volumn/volumn_1678.shtml 广东南方数码科技股份有限公司. 2019.南方CASS免费试用版[CP].http://o.southgis.com/ 黄江, 石豫川, 吉锋, 等. 2013.三维激光扫描技术在高边坡危岩体调查中的应用与讨论[J].长江科学院院报, 30(11):45-49. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201311010 黄润秋, 许强, 陶连金. 2002.地质灾害过程模拟和过程控制研究[M].北京:科学出版社:81-91. 黄润秋, 许强. 1999.地质灾害过程模拟与过程控制——基于变形理论的地质灾害评价及治理设计理论纲要[J].自然科学进展, 9(12增刊):1273-1279. http://www.cnki.com.cn/Article/CJFDTotal-ZKJZ1999S1020.htm 江颜, 闫俊, 陈思娇. 2013.三维激光扫描在矿区边坡地质调查中的应用[J].有色金属(矿山部分), 65(5):96-100. http://d.old.wanfangdata.com.cn/Periodical/ysjs-ks201305023 李秋, 秦永智, 李宏英. 2006.激光三维扫描技术在矿区地表沉陷监测中的应用研究[J].煤炭工程, (4):97-99. http://d.old.wanfangdata.com.cn/Periodical/mtgc200604040 李天. 2019.基于RTK技术的无人机在大比例尺地形图测绘中的精度分析[J].测绘与空间地理信息, 42(3):166-168. http://d.old.wanfangdata.com.cn/Periodical/dbch201903046 刘昌军, 张顺福, 丁留谦, 等. 2012.基于激光扫描的高边坡危岩体识别及锚固方法研究[J].岩石力学与工程学报, 31(10):2139-2146. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201210020 刘海洋, 王学良, 李丽慧, 等. 2017.无人机航空摄影测量技术在崩塌灾害调查中的应用[J].工程地质学报, 25(增刊):82-87. http://www.gcdz.org/CN/abstract/abstract12591.shtml 刘文龙, 赵小平. 2009.基于三维激光扫描技术在滑坡监测中的应用研究[J].金属矿山, (2):131-133. http://d.old.wanfangdata.com.cn/Periodical/jsks200902036 孙娟娟, 王学良, 陈子干, 等. 2017.高陡边坡危石的岩体结构特征识别及滚石运动特征预测[J].工程地质学报, 25(增刊):407-414. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201710001063.htm 王华俊, 邓检良, 罗先启, 等. 2017.基于多旋翼无人机低空摄影的公路边坡测绘研究[J].工程勘察, (12):45-49, 54. http://d.old.wanfangdata.com.cn/Periodical/gckc201712009 王新, 陈武, 汪荣胜, 等. 2010.浅论低空无人机遥感技术在水利相关领域中的应用前景[J].浙江水利科技, (6):27-29. http://d.old.wanfangdata.com.cn/Periodical/zjslkj201006010 徐进军, 王海城, 罗喻真, 等. 2010.基于三维激光扫描的滑坡变形监测与数据处理[J].岩土力学, 31 (7):2188-2191, 2196. http://d.old.wanfangdata.com.cn/Periodical/ytlx201007027 许志华, 吴立新, 陈绍杰, 等. 2016.基于无人机影像的露天矿工程量监测分析方法[J].东北大学学报(自然科学版), 37(1):84-88. http://d.old.wanfangdata.com.cn/Periodical/dbdxxb201601018 杨智翔, 田佳, 周航宇. 2019.无人机航测在某水库1:2000地形测绘中的应用[J].地理空间信息, 17(3):1-3. http://d.old.wanfangdata.com.cn/Periodical/dlkjxx201903002 张涵. 2014.无人机在测绘工程中应用技术的分析[J].硅谷, (16):127-128. http://d.old.wanfangdata.com.cn/Periodical/guig201416093 张骞棋. 2018.轻型无人机在危岩体结构面信息解译中的应用[J].中国锰业, 36(5):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201805006 赵明宇, 王凤艳, 王明常, 等. 2018.基于无人机摄影测量的岩体结构面信息获取[J].工程地质学报, 26(增刊):480-487. http://www.gcdz.org/CN/abstract/abstract22861.shtml 浙江省地质矿产局. 1989.浙江省区域地质志[M].北京:地质出版社. 周光耀, 史超凡, 孙健. 2019.无人机倾斜摄影快速地形图测绘方法研究[J].北京测绘, 33(1):76-79. http://d.old.wanfangdata.com.cn/Periodical/bjch201901017 周小杰, 胡振彪, 乔新. 2019.无人机倾斜摄影技术在大比例尺地形图测绘中的应用[J].城市勘测, (1):63-66. http://d.old.wanfangdata.com.cn/Periodical/zggxjsqy201712142 -