A PRELIMINARY FRAMEWORK OF STANDARD SEQUENCE CLASSIFICATION OF ROCK & SOIL STRATA
-
摘要: 当前的岩土分类方案存在碎片化问题,各种岩土类型之间存在大量的模糊过渡地带。岩土通用分类方案宜基于岩土的基本物质组成,即固体、液体和气体,一般情况下,可采用特殊组分+颗粒大小+孔隙率+饱和度的组合方案。本文中的特殊组分包括特殊矿物和有机质,特殊矿物是指以蒙脱石族为代表的片状矿物、易溶盐和碳酸盐类矿物。通用分类的评价指标应适用于各类岩土,仅适合某些岩土的指标可作为次一级的分类指标。本文采用岩土颗粒大小和特殊组分进行岩土颗粒的通用分类,采用孔隙率衡量岩土颗粒之间的绝对紧密程度,采用饱和度衡量岩土的含水状态。单个岩土地层定义为具有相同的地质时代成因及相同的特殊组分、岩土颗粒大小、致密度和饱和度的地层,标准岩土地层序列定义为一个地区内某个地质时代、某种成因类型的完整岩土地层序列。建立一个地区、国家乃至全球范围内各时代成因的标准岩土地层序列是岩土地层大数据库的重要基础。Abstract: In the current classification of rock and soil, there is a fragmentation problem to cause lots of fuzzy zones among various rock or soil types. The general classification of rock and soil should be based on the basic material compositions, ie, soild, liquid and gas. Generally, the combination scheme of special components, grain diameter, porosity and degree of saturation can be adopted. In this paper, special components include orgnic matter and special minerals including layered minerals represented by montmorillonite, soluble salts and carbonate minerals. The general classification index has to be applicable to various kinds of rock and soil. But some parameters only suitable for a special rock or soil can be used as the secondary classification index. Grain sizes and special components are adopted to classify particles of rock & soil, porosity to measure the absolute compactness among particles and degree of saturation to measure moisture content. A rock or soil stratum is defined as the one with the same geological age, the same genetic type and the same special components, grain sizes, compactness and degree of saturation. The standard sequence of rock & soil strata is defined as the complete sequence of rock and soil strata for a special geological age and a genetic type in a region. It is an important foundation of large database of rock and soil strata to establish the standard sequence of rock & soil strata for all the geological ages and genetic types in a region, nation or the whole world.
-
图 1 各类岩土单轴抗压强度与孔隙率的关系
σ1-n1红色泥岩(殷跃平等,2004);σ2-n2页岩(凌斯祥,2011);σ3-n3泥岩、砂岩(陈法彬等,2013);σ4-n4生物碎屑灰岩、珊瑚碎屑灰岩(朱长岐等,2015);σ5-n5泥岩(张述兴,2008);σ6-n6三趾马红土(李滨等,2013);σ7-n7黄土(秦鹏成等,2017);σ9-n9南海珊瑚礁灰岩(王志新等,2008);σ10-n10红色砂岩、泥岩(王子忠,2011);σ11-n11红色砾岩、砂岩、泥岩(王志强,2006);σ12-n12花岗岩(何珊儒等,2005)
Figure 1. Relation between uniaxial compressive strength and porosity of various types of rock & soil
表 1 根据单轴抗压强度划分岩石坚硬程度的分级标准
Table 1. Grading standards of hardness degree of rock according to uniaxial compressive strength
坚硬程度 规范名称 极弱 极软 很软 软 较软 较硬 坚硬 很强 极强 fr<30
(软质岩)fr≥30
(硬质岩)《工业与民用建筑工程地质勘察规范》 fr<5
(很软)5≤fr<30
(次软)30≤fr≤60
(次硬)fr>60
(极硬)《岩土工程勘察规范》(GB50021-94) fr≤5
(极软)5<fr≤15
(软)15<fr≤30
(较软)30<fr≤60
(较硬)fr>60
(坚硬)《勘察规范》 fr<1
(极软)1<fr≤5
(很软)5<fr≤15
(软)15<fr≤30
(较软)30<fr≤60
(中等)60<fr≤100
(强)100<fr≤250 fr>250 《岩石与岩体标准》 fr≤1.25
(很低)1.25<fr≤5
(低)5<fr≤12.5
(中等低)12.5<fr≤50
(中等)50<fr≤100
(强)100<fr≤200 fr>200 英国标准 fr<1
(极弱)1<fr≤5
(很弱)5<fr≤25
(弱)25<fr≤50
(中强)50<fr≤100
(强)100<fr≤250 fr>250 欧盟标准 fr<0.5
(极弱)0.5 ≤fr≤1.25
(很弱)1.25<fr≤5(弱) 5<fr≤12.5
(中弱)12.5<fr≤50
(中强)50<fr≤100
(强)100<fr≤200 fr>200 香港标准 (1)《工业与民用建筑工程地质勘察规范》(TJ21-77) fr采用未风化岩石饱和单轴抗压强度,《岩土工程勘察规范》(GB50021-94) fr采用新鲜岩石饱和单轴抗压强度,《勘察规范》 fr采用岩石饱和单轴抗压强度,《岩石与岩体标准》 fr采用岩石天然单轴抗压强度,英国标准《B.S. 5930:1981岩石强度分类》、欧盟标准《岩石分类标准》和香港标准《岩土描述指南》采用岩石单轴抗压强度,但需说明试样的尺寸、含水状态、各向异性和试验程序等。(2)《岩土工程勘察规范》(GB50021-94)和《岩土工程勘察规范》(GB50021-2001)分别采用杆长修正标贯击数和实测标贯击数划分花岗岩残积土、全风化和强风化岩 表 2 粒组的不同分级标准
Table 2. Different classification standards of fraction
1级/序号 巨粒/3 粗粒/2 细粒/1 规范名称 2级/序号 漂石/2 卵石/1 砾粒/2 砂粒/1 粉粒/2 黏粒/1 3级/序号 大漂石/2 漂石/1 卵石/1 粗砾/3 中砾/2 细砾/1 粗砂/3 中砂/2 细砂/1 粗粉粒/3 中粉粒/2 细粉粒/1 黏粒/1 颗粒粒径/mm >630 630~200 200~63 63~20 20~6.3 6.3~2 2~0.63 0.63~0.2 0.2~0.063 0.063~0.02 0.02~0.0063 0.0063~0.002 <0.002 《欧盟土的分类标准》 >200 200~60 60~20 20~5 5~2 2~0.5 0.5~0.25 0.25~0.075 0.075~0.005 <0.005 《土的分类标准》 2~32 0.0625~2 0.002~0.0625 0.002~0.001 克鲁宾自然粒级(1934) φ=-log2d φ值 -1~-5 -1~4 4~9 9~10 表 3 按颗粒大小及其含量的岩土颗粒统一分类建议标准
Table 3. Suggested classification standard of fraction
1级/序号 巨粒/3 粗粒/2 细粒/1 2级/序号 漂石/2 卵石/1 砾粒/2 砂粒/1 粉粒/2 黏粒/1 3级/序号 大漂石/2 漂石/1 卵石/1 粗砾/3 中砾/2 细砾/1 粗砂/3 中砂/2 细砂/1 粗粉/3 中粉/2 细粉/1 黏粒/1 颗粒粒径/mm >600 600~200 200~60 60~20 20~5 5~2 2~0.5 0.50~0.25 0.25~0.075 0.075~0.02 0.02~0.005 0.005~0.002 <0.002 (1)岩土颗粒名称定义为粒径大于某粒组的颗粒质量首次超过总质量50%的粒组名称; (2)参照《欧盟土的分类标准》划分粉粒组和黏粒组 表 4 岩土特殊组分分级
Table 4. Classification of special components of rock & soil
特殊组分名称 特殊组分含量/%/序号 低/1 较低/2 中等/3 较高/4 高/5 很高/6 有效蒙脱石 <10 10~15 15~20 20~30 30~50 ≥50 易(中)溶盐 <0.3 0.3~1 1~5 5~10 10~25 25~50 CaCO3 <10 10~25 25~50 50~75 75~90 ≥90 有机质 <2 2~10 10~25 25~40 40~60 ≥60 (1)有效蒙脱石含量是指单矿物的蒙脱石和混层矿物中蒙脱石在干燥岩土中的绝对含量,采用《岩石与岩体标准》的分级标准,并适当扩展。有效蒙脱石含量可采用次甲基蓝选择吸附法测定。需要注意的是采用吸蓝法测定的蒙脱石含量一般高于X射线定量法或相混合计算法测定的蒙脱石含量(李歌等,2011)。(3)易溶盐包括NaCl、KCl、CaCl2、Na2SO4、Na2SO4 ·10H2O、MgSO4、MgSO4 ·6H2O、Na2CO3、NaHCO3等,中溶盐包括CaSO4、CaSO4 ·2H2O等,易(中)溶盐含量为易溶盐和中溶盐之和。参照《勘察规范》和《岩石与岩体标准》的分级标准,但适当调整了分级界限。(4)CaCO3含量包括基质和颗粒。CaCO3含量<10%的岩土可不参与命名,10%~25%可称为“含钙质岩土”,25%~50%称为“钙质岩土”,50%~75%称为“XX质灰岩”,75%~90%称为“含XX质灰岩”,≥90%称为“灰岩”(Clark & Walker,1977;冯增昭,1982;李大通,1985)。(5)有机质含量分级参照《勘察规范》,但适当调整了有机土与无机土的分级界限 表 5 根据孔隙率或孔隙比划分的岩土致密度分级
Table 5. Classification of compactness of rock & soil according to porosity or void ratio
序号 孔隙率n/% 孔隙比e 岩土致密度 典型岩土 11 n≤1 e≤0.010 极致密 极致密的花岗岩、闪长岩、辉绿岩、流纹岩、玄武岩、角岩、石英岩 12 1<n≤2 0.010<e≤0.020 很致密 很致密的花岗岩、闪长岩、辉绿岩、流纹岩、玄武岩、角岩、石英岩 13 2<n≤5 0.020<e≤0.053 致密 致密的花岗岩、闪长岩、玄武岩、砂岩、灰岩、白云岩、蚀变岩、板岩、石英岩 14 5<n≤10 0.053<e≤0.111 较致密 较致密的花岗岩、闪长岩、玄武岩、砂岩、灰岩、板岩、蚀变岩、石英岩 21 10<n≤15 0.111<e≤0.176 较疏松 较疏松的花岗岩、闪长岩、玄武岩、砂岩、页岩、灰岩、蚀变岩、石英岩 22 15<n≤20 0.176<e≤0.250 疏松 疏松的花岗岩、玄武岩、泥岩、砂岩、页岩、灰岩、蚀变岩 23 20<n≤25 0.250<e≤0.333 很疏松 极密实的碎石土、砂土、很疏松的玄武岩、砂岩、泥岩、页岩、灰岩、块状强风化花岗岩 24 25<n≤30 0.333<e≤0.428 极疏松 极密实的碎石土、砂土、极疏松的玄武岩、页岩、泥灰岩、泥岩、砂岩、块状强风化花岗岩 31 30<n≤35 0.428<e≤0.538 密实 密实的QP1、QP2砂层、极疏松的灰岩、泥岩、砂砾状-块状强风化花岗岩 32 35<n≤40 0.538<e≤0.667 中密 中密的QP3砂层、坚硬的QP1~QP3黏性土、非湿陷性黄土、极疏松的灰岩、泥岩、砂砾状强风化粗粒花岗岩 33 40<n≤45 0.667<e≤0.818 稍密 稍密的Qh砂层、硬塑-坚硬的QP1~QP3黏性土、非湿陷性黄土、极疏松的灰岩、全风化~(砂)土状强风化花岗岩 41 45<n≤50 0.818<e≤1.0 较松散 软塑-可塑的黏性土、Qh砂土、硬塑-坚硬红黏土、可塑-坚硬的花岗岩残积土、弱湿陷性黄土-中等湿陷性黄土、全风化花岗岩、极疏松的泥质灰岩 42 50<n≤60 1.0<e≤1.5 松散 流塑的淤泥质土、中等-强湿陷性黄土、可塑-坚硬红黏土、软塑-可塑的花岗岩残积土、极疏松的珊瑚礁礁灰岩、海滩岩 43 60<n≤75 1.5<e≤3.0 很松散 淤泥、泥炭(质)土、流塑-硬塑红黏土、硅藻土、浮岩 44 75<n≤90 3.0<e≤9.0 极松散 淤泥、膨润土、泥炭、硅藻土、浮岩 51 90<n≤98 9.0<e≤49.0 泡沫状 膨润土、泥炭、硅藻土、浮岩 52 98<n<100 49.0<e<∞ 强泡沫状 膨润土、泥炭、硅藻土、浮岩 60 100 ∞ 孔洞 张开的节理、裂隙面,溶洞、土洞,人工开挖的硐室、矿井等 表 6 岩土含水状态的分级
Table 6. Classification of moisture content of rock & soil
岩土含水状态/序号 饱和/1 潮湿/2 稍湿/3 稍干/4 干燥/5 饱和度(%) ≥80 50~80 25~50 10~25 <10 岩土含水状态的分级参考部分资料(Barden,1965;俞培基等,1965;包承纲,1979;谭成轩等,2011),考虑整个岩土地层系列,适当调整了分级界限 表 7 标准岩土地层序号排列规则
Table 7. Numbering rules of standard rock & soil strata
时代 成因 饱和度 致密度 特殊组分 岩土颗粒通用名称 5级 14种 5级 6类,18级 4类,6级 3类、6级、13种 (1)根据《中国地层表》共划分3宙、11代、19纪、39世、92期,未知时代的序号为0,如侏罗纪早期序号为12230,其中“1”代表显生宙,“2”代表显生宙序号第2的中生代,第2个“2”代表中生代序号第2的侏罗纪,“3”代表侏罗纪序号第3的早侏罗世,“0”代表未知期。(2)岩土地层成因分为沉积岩、岩浆岩、变质岩和人工岩4种,序号分别为10、20、30、40,未知成因的序号为00。沉积岩的成因可进一步细分为水成、风成、生物堆积、重力堆积、冰川堆积和成因不明6种,序号分别为11~15,成因不明的序号为10;岩浆岩可分为侵入岩和喷出岩,序号分别为21、22;变质岩可分为区域变质岩、热接触变质岩、动力变质岩,序号分别为31~33;人工岩可分为天然岩土的人工填土、杂填土、人工构筑物等,序号分别为41~43。(3)饱和度按表 6划分,饱和、潮湿、稍湿、稍干和干燥的序号分别为1~5,未知饱和度的序号为0。(4)致密度按表 5划分,致密、疏松、密实、松散、泡沫状和孔洞类的序号分别为10、20、30、40、50、60,如极疏松序号为24,未知致密度的序号为00。(5)按照表 4中的特殊组分顺序和含量等级序号编排特殊组分序号,采用4位数表示,未知特殊组分含量的序号为0,如中等蒙脱石较低有机质含量的序号为3112,其中“3”代表中等蒙脱石含量,“2”代表较低有机质含量,第1个“1”代表易(中)溶盐含量低,第2个“1”代表CaCO3含量低。(6)岩土颗粒大小名称按表 3划分。第1级细粒、粗粒和巨粒的序号分别为1~3,第2级黏粒、粉粒的序号分别为1、2,砂粒、砾粒的序号分别为1、2,卵粒和漂粒的序号分别为1、2,第3级如砂粒类的细砂、中砂、粗砂的序号分别为1~3,因此,中砂序号为212。当难以细分颗粒大小时,其序号定为0,如细粒土(岩)的序号为100,砂土(岩)的序号为210。(7)按照表 7顺序排列岩土地层的数字序号。如全新世海积饱和很松散较低蒙脱石较低易溶盐较低有机质含量粉质黏土(淤泥,编号为11110-11-1-43-2212-120)、全新世沼泽沉积稍湿松散较低蒙脱石高易溶盐较低有机质含量粉质黏土(超盐渍土,编号为11110-11-3-42-2512-120)、全新世海相稍湿极疏松高碳酸盐含量砾屑灰岩(海滩岩,编号为11110-11-3-34-1151-220)、晚更新世风积稍干较松散较低易溶盐较低CaCO3含量粉质黏土(中等湿陷性黄土,编号为11121-12-4-41-1221-120)、上新世末期湖积饱和密实较高蒙脱石含量黏土(陕西宝鸡三趾马红土,编号为11211-11-1-31-4111-122)、二叠纪饱和较致密中砂岩(编号为13100-10-1-14-1111-212)、燕山四期饱和极疏松粗粒花岗岩(编号为12120-21-1-24-1111-213)等 -
Alfreds R, Jumikis. 1983. Rock mechanics[M]. Houston:Gulf Publishing Company. ASTM.Standard Practice for Classification of Soils for Engineering Purpose(Unified Soil Classification)[S].ASTM Standard D 2487-00. ASTM International, West Conshohocken: 1428-2959. Bao C G. 1979. Gas phase morphology and pore pressure dissipation of unsaturated compacted sois. The third national symposium on soil mechanics and foundation engineerin[C]. Beijing: China Architecture & Building Press. Barden L. 1965. Consolidation of compacted and unsaturated calys[J]. Géotechnique, 15 (3):267-286. doi: 10.1680/geot.1965.15.3.267 Chen F B, Zhou A W. 2013. Influence of physical properties on uniaxial compressive strength of rock[J]. Journal of Henan Science and Technology, (7):175. China Academy of Building Research, Nanjin Hydraulic Research Institute. 2011. Specification for geotechnical investigation in soft clay area(JGJ83-2011)[S].Beijing: China Planning Press. China Rewnewable Energy Engineering Institute, Nanjin Hydraulic Research Institute. 2014. Standard for fundamental terms of geotechnical engineering(GB/T50279-2014)[S].Beijing: China Planning Press. CIGIS(China) Limited. 2008. Standard for identification and description of rock & rock mass(CECS 239: 2008)[S].Beijing: China Planning Press. CIGIS(China) Limited. 2009. Code for investigation of geotechnical engineering(GB50021-2001)[S].Beijing: China Architecture & Building Press. Clark A R, Walker B F. 1977. Approposed scheme for the classification and nomendature for use in engineering description of middle eastern sedimentary rock[J]. Géotechnique, 27(1):93-99. doi: 10.1680/geot.1977.27.1.93 Colten-Bradley V A. 1987. Role of pressure in smectite dehydration:effects on geopressure and smectite-to-illite transformation[J]. AAPG Bulletin, 71 (11):1414-1427. http://www.onacademic.com/detail/journal_1000042312145899_e37f.html Feng Z Z, 1982. Classification of carbonate rocks[J]. ACTA Petrolei Sinica, (1):11-18. http://d.old.wanfangdata.com.cn/Periodical/dqkx201902010 He S Y, Wei G L, Zhang F L, 2005. Study on features of granite weathering profile in Dongguang district[J]. West-China Exploration Engineering, (114):77-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbtkgc200510037 Heifei University of Technology, China Construction Third Engineering Bureau Co., Ltd., 2014. Technical code for building in saline soil regions. (GB/T50942-2014)[S].Beijing: China Planning Press. Herman H, Rieke Ⅲ, George V. Chilingarian. 1984. Compaction of argillaceous sediments[M]. Beijing:Geological Publishing House. Mitchell J K. 1993. Fundamental of soil behavior[M]. New York:John Wiley & Sons Inc. Ji L M, Ma X X, Xia Y Q, et al. 2014. Relationship between methane adsorption capacity of clay minerals and micropore volume[J]. Natural Gas Geoscience, 25 (2):141-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201402001 Lan X H. 2005. Rough knowledge of strata in China sea areas[J]. Marine Geology Letters, 21 (4):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt200504001 Li B, Wu S R, Shi J S, et al. 2013. Engineering geological properities and hazards effects of Hipparion laterite in Baoji, Shaanxi provice[J]. Geological Bulletin of China, 32 (12):1918-1924. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201312005.htm Li D T. 1985. Classification principles and basic program for analysis and determination of carbonate stratum types[J]. Carsologica Sinica, (4):349-358. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR198504008.htm Li G, Ma H W, Wang H L, et al. 2011. Modal analysis of montmorillonite in bentonites using phase mixing equation:a comparative study[J]. Earth Science Frontiers, 18 (1):216-221. http://d.old.wanfangdata.com.cn/Periodical/dxqy201101025 Li G X. 2004. A discuss on the geotechnical engineering code or standard in China[J]. Geotechnical Investigation & Surveying, (1):11-15. Li N S, Jiang L L, Li C Z. 1998. A study on the nature of crustal structures of the Okinawa trough[J]. Oceanologia Et Limnologia Sinica, 29 (4):441-450. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199804015.htm Ling S X. 2011. Study on geochemical behavior and mechanical characteristic of black shale during weathering[D]. Chengdu: Xinan Jiaotong University. Liu j Q, Liu Q. 2000. Quaternaryin Stratigraphy China[J]. Quaternary Sciences, 20 (2):129-141. Liu Q. 2014. Shimian-Luding section physical and mechanical parameters of granite weathering and microscopic study on correlations between characteristics index[D]. Chengdu: Chengdu University of Technology. Liu Z D. 1994. Analysis on factors affecting coefficient of collapsility of loess[J]. Geotechnical Investigation & Surveying, (5):6-11. Ma G Z. 1995. The application of plasticity chart to Shanxi special soils discrimination[J]. Journal of Xi'an College of Geology, 17 (2):87-89. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX502.013.htm Nanjin Hydraulic Research Institute. 2007. Standard for engineering classification of soil(GB/T50145-2007)[S].Beijing: China Planning Press. Qin P C, Shao S J, Zhen X F, et al. 2017. Study on relationship between structure index and the mechanical properities of loess index[J]. Chinese Journal of Underground Space and Engineering, 13 (5):1215-1220. SGIDI Engineering Consulting(Group)Co., Ltd. 2012. Code for investigation of geotechnical engineering(DGJ08-37-2012)[S].Beijing: China Architecture & Building Press. Shanxi Building Reseach and Design Institute. 2004. Code for building construction in collapsible loess regions(GB50025-2004)[S].Beijing: China Architecture & Building Press. Sun Q, Zhang Z Z, Xue L, et al. 2013. Physico-mechanical properties varitation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (5):935-942. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201305011.htm Tan C X, Sun W F, Zhang C S, et al. 2011. Engineering geological features form borehole cores for typical loess section in Baoji region of loess plateau[J]. Journal of Engineering Geology, 19 (5):732-748. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201105016.htm The European Standard BS EN ISO 14688-1: 2002: Geotechnical investigation and testing-identification and classification of soil. Part 1: Identification and description[S].UK: British Standard Institute, 2004. The European Standard BS EN ISO 14688-2: 2004: Geotechnical investigation and testing-Identification and classification of soil. Part 2: Principle for classification[S].UK: British Standard Institute, 2004. The European Standard BS EN ISO 14689-1: 2003: Geotechnical investigation and testing-identification and classification of rock. Part 1: Identification and description[S].UK: British Standard Institute, 2004. Wang Z Q. 2006. Study on the great and important geoglogical problems of Yintao project in Gansu province[D]. Lanzhou: Lanzhou University. Wang Z X, Wang R, Meng Q S, et al. 2008. Research on characteristics of coral reef calcareous rock in Nansha islands[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (11):2221-2226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200811007 Wang Z Q. 1981. Comment on engineering classification of soils[J]. China Civil Engineering Journal, (1):89-96. Wang Z Z. 2011. Systematic researches on red bed rock mass engineering geological problems of water resources and hydropower projects in Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology. Wei W, Shen J H, Miao Z, et al. 2012. Influence analysis of weathering and altering for physical and mechanical characteristics of granite-porphyry[J]. Journal of Engineering Geology, 20 (4):599-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201204017 Wu W, Wang G B, Mao H J. 2010. Investigation of porosity effect on mechanical strength characteristics of dolostone[J]. Rock & Soil Mechanics, 31 (12):3709-3714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201012003 Xia L Y. 1988. Discovering of giant marine quaternary in the northern continental shelf of the Southern China Sea[J]. Chinese Science Bulletin, (23):1804-1805. Xu J, Ran Y K, Shan X J, et al. 2004. Development of the quaternary system in the Bohai sea area, China[J]. Seismology and Geology, 26 (1):24-32. Yang G L, Huang R Q, Wang J Z, et al. 2006. Study on the pore characteristics and weakness of altered-rock for a project[J]. Mineral Petrol, 26 (4):111-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200604019 Yin Y P, Hu R L. 2004. Engineering geological characteristics of purplish-red mudstone of middle tertiary formation at the Three Gorges reservoir[J]. Journal of Engineering Geology, 24 (3):345-351. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200402003 Yu P J, Chen Y J. 1965. The pore air-water configurations and their effects on the mechanical properties of partially saturated soils[J]. Journal of Hydraulic Engineering, (1):16-23. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB196501001.htm Yu Y T. 1988. The prospect of volcanic rock oil reservoirs in Erlian Basin[J]. Petroleum Exploration and Development, (4):9-19. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK198804001.htm Zhang S G, Zhang Y B, Yan H J. 2015. Introduction to Stratigraphic chart of China(2014)[J]. Journal of Stratigraphy, 39 (4):359-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201504002 Zhang S X. 2008. Research on relationship between substantial composing and mechanical parameters of mudstone in Chongqing[D]. Chongqing: Chongqing Jiaotong University. Zhou G D. 2002. Discussion on the chemical structure of water[J]. University Chemistry, 17 (1):54-63. http://d.old.wanfangdata.com.cn/Periodical/gfztb201211012 Zhu C Q, Zhou B, Liu H F. 2015. Micro-structures and fundamental engineering properties of beach calcarenite from South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (4):683-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201504004 A.Ф.雅库绍娃, B.E.哈茵等著, 何国琦等译. 1995.普通地质学[M].北京: 北京大学出版社. 包承纲. 1979.非饱和压实土的气相形态及孔隙压力消散问题.第三届全国土力学和基础工程会议论文集[C].北京: 中国建筑工业出版社. 成都地质学院岩石教研室. 1978.岩石学简明教程[M].北京:地质出版社. 陈法彬, 周爱武. 2013.岩石物理性质对单轴抗压强度的影响分析[J].河南科技, (7):175. http://d.old.wanfangdata.com.cn/Periodical/hnkj201314146 建设部综合勘察研究设计院. 2009.岩土工程勘察规范(GB50021-2001)[S].北京: 中国建筑工业出版社. 建设综合勘察研究设计院. 2008.岩石与岩体鉴定和描述标准(CECS 239: 2008)[S].北京: 中国计划出版社. 建筑科学研究院. 2011.软土地区岩土工程勘察规程(JGJ83-2011)[S].北京: 中国计划出版社. 冯增昭. 1982.碳酸盐岩分类[J].石油学报, (1):11-18. http://d.old.wanfangdata.com.cn/Periodical/syktykf201604012 合肥工业大学, 中建三局第三建筑工程有限责任公司. 2014. 《盐渍土地区建筑技术规范》(GB/T50942-2014)[S].北京: 中国计划出版社. 何珊儒, 魏国灵, 张福林. 2005.东莞地区花岗岩风化剖面特征研究[J].西部探矿工程, (114):77-79. http://d.old.wanfangdata.com.cn/Periodical/xbtkgc200510037 Herman H.Rieke, Ⅲ, George V.Chilingarian, 徐怀大译. 1984.泥质沉积物的压实[M].北京: 地质出版社. 吉利明, 马向贤, 夏燕青, 等. 2014.黏土矿物甲烷吸附性能与微孔隙体积关系[J].天然气地球科学, 25 (2):141-152. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201402001 蓝先洪. 2005.中国海域地层的研究[J].海洋地质动态, 21 (4):1-5. doi: 10.3969/j.issn.1009-2722.2005.04.001 李滨, 吴树仁, 石菊松, 等. 2013.陕西宝鸡三趾马红土工程地质特性及地质灾害研究[J].地质通报, 32 (12):1918-1924. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201312005.htm 李歌, 马鸿文, 王红丽, 等. 2011.相混合计算法确定蒙脱石含量的对比研究[J].地学前缘, 18 (1):216-221. http://d.old.wanfangdata.com.cn/Periodical/dxqy201101025 李大通. 1985.碳酸盐岩层的分类原则和确定类型的BASIC程序[J].中国岩溶, (4):349-358. http://www.cnki.com.cn/Article/CJFDTotal-ZGYR198504008.htm 李广信. 2004.我国的岩土工程规范标准纵横谈[J].工程勘察, (1):11-15. http://d.old.wanfangdata.com.cn/Periodical/gckc200401004 李乃胜, 姜丽丽, 李常珍. 1998.冲绳海槽地壳结构的研究[J].海洋与湖泽, 29 (4):441-450. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201406011 凌斯祥. 2011.黑色页岩风化的地球化学行为及力学性质研究[D].成都: 西南交通大学. 刘嘉麒, 刘强. 2000.中国第四纪[J].第四纪研究, 20 (2):129-141. doi: 10.3321/j.issn:1001-7410.2000.02.003 刘泉. 2014.石棉至泸定段花岗岩风化的物理力学性质与微观特征指标之间的相关性研究[D].成都: 成都理工大学. 刘祖典. 1994.影响黄土湿陷系数因素的分析[J].工程勘察, (5):6-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400085049 马桂芝. 1995.应用塑性图对陕西特殊土的判别[J].西安地质学院学报, 17 (2):87-89. http://www.cnki.com.cn/Article/CJFDTotal-XAGX502.013.htm 南京水利科学研究院. 2007.土的工程分类(GB/T50145-2007)[S].北京: 中国计划出版社. 秦鹏成, 邵生俊, 郑晓峰, 等. 2017.构度指标与黄土力学特性指标的关系研究[J].地下空间与工程学报, 13 (5):1215-1220. http://d.old.wanfangdata.com.cn/Periodical/dxkj201705011 全国地层委员会. 2002.中国地层指南及中国地层指南说明书[M].北京:地质出版社. 陕西省建筑科学研究设计院. 2004. 《湿陷性黄土地区建筑规范》(GB50025-2004)[S].北京: 中国建筑工业出版社. 上海岩土工程勘察设计研究院有限公司. 2012.岩土工程勘察规范(DGJ08-37-2012)[S].上海: 中国建筑工业出版社. 水利部水利水电规划设计总院, 南京水利科学研究院. 2014. 《岩土工程基本术语标准》(GB/T50279-2014)[S].北京: 中国计划出版社. 孙强, 张志镇, 薛雷, 等. 2013.岩石高温相变与物理力学性质变化[J].岩石力学与工程学报, 32 (5):935-942. doi: 10.3969/j.issn.1000-6915.2013.05.011 谭成轩, 孙炜锋, 张春山, 等. 2011.宝鸡地区典型黄土剖面钻孔岩芯工程地质特性研究[J].工程地质学报, 19 (5):732-748. doi: 10.3969/j.issn.1004-9665.2011.05.014 铁道部第二勘测设计院. 1995.铁路工程地质膨胀土勘测规则(TB10042-1995)[S].北京: 中国计划出版社. 铁道第一勘察设计院. 2001.铁路工程特殊岩土勘察规程(TB10038-2001)[S].北京: 中国铁道出版社. 王志强. 2006.甘肃引兆工程重大工程地质问题研究[D].兰州: 兰州大学. 王志新, 汪秢, 孟庆山, 等. 2008.南沙群岛珊瑚礁礁灰岩力学特性研究[J].岩石力学与工程学报, 27 (11):2221-2226. doi: 10.3321/j.issn:1000-6915.2008.11.007 王钟琦. 1981.浅谈土的工程分类[J].土木工程学报, (1):89-96. http://d.old.wanfangdata.com.cn/Periodical/gxslsd201002005 王子忠. 2011.四川盆地红层岩体主要水利水电工程地质问题系统研究[D].成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1012500788.htm 魏伟, 沈军辉, 苗朝, 等. 2012.风化、蚀变对花岗斑岩物理力学特性影响分析[J].工程地质学报, 20 (4):599-606. doi: 10.3969/j.issn.1004-9665.2012.04.017 吴文, 王贵宾, 冒海军. 2010.白云岩力学强度特性的孔隙影响研究[J].岩土力学, 31 (12):3709-3714. doi: 10.3969/j.issn.1000-7598.2010.12.003 夏伦煜. 1988.南海北部陆架巨厚海相第四系的发现[J].科学通报, (23):1804-1805. http://www.cnki.com.cn/Article/CJFDTotal-KXTB198823013.htm 徐杰, 冉勇康, 单新建, 等. 2004.渤海海域第四系发育概况[J].地震地质, 26 (1):24-32. doi: 10.3969/j.issn.0253-4967.2004.01.003 杨根兰, 黄润秋, 王奖臻, 等. 2006.某工程蚀变岩孔隙特征及其软弱程度分析[J].矿物岩石, 26 (4):111-115. doi: 10.3969/j.issn.1001-6872.2006.04.019 殷跃平, 胡瑞林. 2004.三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J].工程地质学报, 12 (2):124-135. doi: 10.3969/j.issn.1004-9665.2004.02.003 俞培基, 陈愈炯. 1965.非饱和土的水-气形态及其与力学性质的关系[J].水利学报, (1):16-23. http://www.cnki.com.cn/Article/CJFDTotal-SLXB196501001.htm 于英太. 1988.二连盆地火山岩油藏勘探前景[J].石油开发与勘探, (4):9-19. http://www.cnki.com.cn/Article/CJFDTotal-SKYK198804001.htm 章森桂, 张允白, 严惠君, 等. 2015. 《中国地层表(2014)》正式使用[J].地层学杂志, 39 (4):359-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201504002 张述兴. 2008.重庆地区泥岩组成特征与力学参数关系研究[D].重庆: 重庆交通大学. http://cdmd.cnki.com.cn/Article/CDMD-10618-2008071124.htm 周公度. 2002.浅谈水的化学结构[J].大学化学, 17 (1):54-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxhx200201010 朱长岐, 周斌, 刘海峰. 2015.南海海滩岩的细观结构及其基本物理力学性质研究[J].岩石力学与工程学报, 34 (4):683-693. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201504004 -