高温作用后花岗岩单轴压缩下变形破坏特征研究

吴云 李晓昭 黄震 许文涛 邓龙传 刘茂争

吴云, 李晓昭, 黄震, 等. 2020. 高温作用后花岗岩单轴压缩下变形破坏特征研究[J]. 工程地质学报, 28(2): 240-245. doi: 10.13544/j.cnki.jeg.2020-004
引用本文: 吴云, 李晓昭, 黄震, 等. 2020. 高温作用后花岗岩单轴压缩下变形破坏特征研究[J]. 工程地质学报, 28(2): 240-245. doi: 10.13544/j.cnki.jeg.2020-004
Wu Yun, Li Xiaozhao, Huang Zhen, et al. 2020. Deformation and failure characteristics of granite under uniaxial compression after high temperature[J]. Journal of Engineering Geology, 28(2): 240-245. doi: 10.13544/j.cnki.jeg.2020-004
Citation: Wu Yun, Li Xiaozhao, Huang Zhen, et al. 2020. Deformation and failure characteristics of granite under uniaxial compression after high temperature[J]. Journal of Engineering Geology, 28(2): 240-245. doi: 10.13544/j.cnki.jeg.2020-004

高温作用后花岗岩单轴压缩下变形破坏特征研究

doi: 10.13544/j.cnki.jeg.2020-004
基金项目: 

南京大学博士生创新创意研究计划项目 XCXY-19-62

详细信息
    作者简介:

    吴云(1991-),男,博士生,主要从事岩石力学方面的研究. E-mail: wy1562254170@163.com

    通讯作者:

    李晓昭(1968-),男,博士,教授,博士生导师,主要从事工程地质方面的研究. E-mail: lixz@nju.edu.cn

  • 中图分类号: P642.3

DEFORMATION AND FAILURE CHARACTERISTICS OF GRANITE UNDER UNIAXIAL COMPRESSION AFTER HIGH TEMPERATURE

Funds: 

the Innovative and Creative Research Program for Doctoral Students of Nanjing University XCXY-19-62

  • 摘要: 本文采用TAW-2000伺服三轴试验机及声发射检测设备,对高温作用后的花岗岩在25~650℃单轴压缩下的声发射特征进行试验研究,分别分析了高温作用后的花岗岩纵波波速、最大强度及振铃计数随时间的变化规律。研究结果表明:花岗岩的纵波波速和最大强度随着温度的升高而下降,当温度超过500℃时,纵波波速和最大强度下降幅度最大,可见花岗岩的阈值温度为500℃左右。高温作用后的花岗岩在加载过程中始终伴随声发射信号,并且与应力-时间曲线具有较好的对应关系,不同温度作用后的花岗岩声发射活动程度不同,温度越高,声发射活动愈强烈。500℃前花岗岩试样主要以劈裂破坏为主,温度达到500℃,花岗岩试样以剪切破坏为主,高温导致花岗岩试样内部结构发生改变,试样内部的裂纹逐渐发生扩展、贯通,最终发生破坏。
  • 图  1  加热后的花岗岩试样

    Figure  1.  The granite sample after high temperature

    图  2  TAW-2000三轴试验机及声发射测试系统

    Figure  2.  TAW-2000 triaxial testing machine and acoustic emission testing system

    图  3  高温后花岗岩单轴抗压强度与温度关系

    Figure  3.  Relationship between uniaxial compressive strength and temperature of granite after high temperature

    图  4  高温后花岗岩纵波波速与温度关系

    Figure  4.  The relationship between P-wave velocity and temperature of granite after high temperature

    图  5  不同温度作用后声发射参数与应力随时间变化曲线

    a. 25℃;b. 200℃;c. 350℃;d. 500℃;e. 650℃

    Figure  5.  The curve of AE parameters and stress with time under different temperature

    图  6  不同温度作用后花岗岩破坏形态

    Figure  6.  Failure modes of granite under different temperatures

  • Chen S W, Yang C H, Wang G B. 2017. Evolution of thermal damage and permeability of Beishan granite[J]. Applied Thermal Engineering, 110: 1533-1542. doi: 10.1016/j.applthermaleng.2016.09.075
    Ge Z L, Sun Q. 2018. Acoustic emission(AE)characteristics of granite after heating and cooling cycles[J]. Engineering Fracture Mechanics, 200: 418-429. doi: 10.1016/j.engfracmech.2018.08.011
    Ghasemi S, Khamehchiyan M, Taheri A, et al. 2019. Crack evolution in damage stress thresholds in different minerals of granite rock[J]. Rock Mechanics and Rock Engineering, doi: https://doi.org/10.1007/s00603-019-01964-9.
    He A L, Wang Z L, Shi H. 2018. Strength characteristics and mineral component variations of heat-treated granite[J]. Journal of Hefei University of Technology, 41(4): 501-506. http://d.old.wanfangdata.com.cn/Periodical/hfgydxxb201804013
    Kong B, Wang E Y, Li Z H, et al. 2016. Fracture mechanical behavior of sandstone subjected to high-temperature treatment and its acoustic emission characteristics under uniaxial compression conditions[J]. Rock Mechanics and Rock Engineering, 49(12): 4911-4918. doi: 10.1007/s00603-016-1011-3
    Li A Q, Zhang R, Ai T, et al. 2016. Acoustic emission space-time evolution rules and failure precursors of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 38 (S2): 306-311. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb2016z2050
    Li H R, Yang C H, Liu Y G, et al. 2014. Experimental research on ultrasonic velocity and acoustic emission properties of granite under failure process[J]. Chinese Journal of Geotechnical Engineering, 36(10): 1915-1923. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201410020
    Li Y H, Liu J B, Zhao X D, et al. 2009. Study on b-value and fractal dimension of acoustic emission during rock failure process[J]. Rock and Soil Mechanics, 30(9): 2559-2563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200909003
    Lin G Y, Zhao Q H, Wang C H, et al. 2018. Studies on acoustic emission characteristics of cyclic loading-unloading granite failure[J]. Journal of Engineering Geology, 26(2): 475-483. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201802026
    Liu B X, Huang J L, Wang Z Y, et al. 2009. Study on damage evolution and acoustic emission character of coal—rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (S1): 3234-3238. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2009S1099.htm
    Qian Q H, Li S C. 2016. A review of research on zonal disintegration phenomenon in deep rock mass engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1278-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200806024
    Ranjith P G, Viete D R, Chen B J, et al. 2012. Transformation plasticity and the effect of temperature on the mechanical behavior of Hawkesbury sandstone at atmospheric pressure[J]. Engineering Geology, 151: 120-127. doi: 10.1016/j.enggeo.2012.09.007
    Sirdesai N N, Gupta T, Singh T N, et al. 2018. Studying the acoustic emission response of an Indian monumental sandstone under varying temperatures and strains[J]. Construction and Building Materials, 168(20): 346-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db1b3183c1dd317d66220265b5de0887
    Sun J. 2019. Development and some issues on exploitation and utilization of urban underground space in China and Abroad[J]. Tunnel Construction, 39(5): 699-709. http://d.old.wanfangdata.com.cn/Periodical/sdjs201905001
    Sun Q, Zhang Z Z, Xue L, et al. 2013. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engi ̄neering, 32(5): 935-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201305011
    Wang D Y, Wu G, Ge X R. 2011. Acoustic emission characteristics of limestone during compression and fracture after high tempera ̄ture[J]. Journal of Shanghai Jiaotong University, 45(5): 743-748.
    Wang L J, Zhang B, Qian Z K, et al. 2019. Experiental investigation of the acoustic emission characteristics of two types of brittle rocks under uniaxial compression[J]. Journal of Engineering Geology, 27(4): 699-705.
    Wu G, Xing A G, Zhang L. 2007. Mechanical charactistics of sandstone after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 26(10): 2110-2116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200710022
    Xi D Y. 1994. Physical characteristics of mineral phase transition in the granite[J]. Acta Mineralogica Sinica, 14(3): 223-227.
    Zhai S T, Wu G, Zhang Y, et al. 2013. Research on acoustic emission characteristics of granite under high temperateure[J]. Chinese Journal of Rock Mechanics and Engineering, 32(1): 126-134.
    Zhang Y B, Wu W R, Yao X L, et al. 2020. Acoustic emission-infrared characteristics and damage evolution of granite under uniaxial compression[J]. Rock and Soil Mechanics, 41(S1): doi: 10.16285/j.rsm.2019.0305.
    Zhao J J, Fang Q, Li P F, et al. 2019. Acoustic emission b value characteristics and failure precursor of the dacite under different stress paths[J]. Journal of Engineering Geology, 27(3): 487-496. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201903003
    何爱林, 王志亮, 石恒. 2018.温度作用后花岗岩强度特性及矿物成分变化特征[J].合肥工业大学学报(自然科学版), 41(4): 501-506. doi: 10.3969/j.issn.1003-5060.2018.04.013
    李安强, 张茹, 艾婷, 等. 2016.花岗岩单轴压缩全过程声发射时空演化行为及破坏前兆研究[J].岩土工程学报, 38(增2): 306-311. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb2016z2050
    李浩然, 杨春和, 刘玉刚, 等. 2014.花岗岩破裂过程中声波与声发射变化特征试验研究[J].岩土工程学报, 36(10): 1915-1923. doi: 10.11779/CJGE201410020
    李元辉, 刘建坡, 赵兴东, 等. 2009.岩石破裂过程中的声发射b值及分形特征研究[J].岩土力学, 30(9): 2559-2563. doi: 10.3969/j.issn.1000-7598.2009.09.003
    林冠宇, 赵其华, 王晨辉, 等. 2018.循环加卸载条件下花岗岩破坏过程声发射特征研究[J].工程地质学报, 26(2): 475-483. doi: 10.13544/j.cnki.jeg.2017-136
    刘保县, 黄敬林, 王泽云, 等. 2009.单轴压缩煤岩损伤演化及声发射特性研究[J].岩石力学与工程学报, 28(增1): 3234-3238. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z1096
    钱七虎, 李树忱. 2008.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报, 27(6): 1278-1284. doi: 10.3321/j.issn:1000-6915.2008.06.024
    孙钧. 2019.国内外城市地下空间资源开发利用的发展和问题[J].隧道建设(中英文), 39(5): 699-709. http://d.old.wanfangdata.com.cn/Periodical/sdjs201905001
    孙强, 张志镇, 薛雷, 等. 2013.岩石高温相变与物理力学性质变化[J].岩石力学与工程学报, 32(5): 935-942. doi: 10.3969/j.issn.1000-6915.2013.05.011
    王德咏, 吴刚, 葛修润. 2011.高温作用后石灰岩受压破裂过程的声发射试验研究[J].上海交通大学学报, 45(5): 743-748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shjtdxxb201105024
    王林均, 张搏, 钱志宽, 等. 2019.单轴压缩下2类脆性岩石声发射特征试验研究[J].工程地质学报, 27(4): 699-705. doi: 10.13544/j.cnki.jeg.2019-025
    吴刚, 邢爱国, 张磊. 2007.砂岩高温后的力学特性[J].岩石力学与工程学报, 26(10): 2110-2116. doi: 10.3321/j.issn:1000-6915.2007.10.022
    席道瑛. 1994.花岗岩中矿物相变的物性特征[J].矿物学报, 14(3): 223-227. doi: 10.3321/j.issn:1000-4734.1994.03.003
    翟松韬, 吴刚, 张渊, 等. 2013.高温作用下花岗岩的声发射特征研究[J].岩石力学与工程学报, 32(1): 126-134. doi: 10.3969/j.issn.1000-6915.2013.01.018
    张艳博, 吴文瑞, 姚旭龙, 等. 2020.单轴压缩下花岗岩声发射-红外特征及损伤演化试验研究[J].岩土力学, 41(增1):doi: 10.16285/j.rsm.2019.0305.
    赵建军, 樊奇, 李鹏飞, 等. 2019.不同应力路径下英安岩声发射b值特征及破坏前兆[J].工程地质学报, 27(3): 487-496. doi: 10.13544/j.cnki.jeg.2018-242
  • 加载中
图(6)
计量
  • 文章访问数:  1191
  • HTML全文浏览量:  414
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-02-24
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回