EFFECT OF SOIL MOISTURE CONTENT ON SHEAR STRENGTH OF ROOTED SOIL IN LOESS REGIONS OF XINING BASIN
-
摘要: 为进一步研究植物根系的固土护坡力学效应,探讨边坡土体含水量对植物根系增强土体抗剪强度的影响,以西宁盆地长岭沟流域作为研究区,选取两种优势灌木植物柠条锦鸡儿(Caragana korshinskii Kom.)、白刺(Nitraria sphaerocarpa Maxim.)和两种优势草本植物芨芨草(Achnatherum splendens(Trin.)Nevski)、细茎冰草(Agropyron trachycaulum Linn. Gaertn.)作为供试种,设置土体含水量分别为6%、10%、14%、18%、22% 5种不同梯度条件,制备根-土复合体和不含根系素土扰动试样,并在室内分别进行直剪试验,分析5种含水量条件下根-土复合体抗剪强度指标的变化规律。试验结果表明:4种草本和灌木植物根系具有显著提高边坡土体抗剪切变形的能力,随着含水量梯度的增加,素土与根-土复合体抗剪切变形能力减弱;当土体含水量相同时,与不含根系素土试样相比,根-土复合体的黏聚力普遍大于素土,而其内摩擦角变化相对较小,其中根-土复合体黏聚力的增长量为1.94~12.17 kPa,增长幅度为34.50% ~360.69%;素土与根-土复合体的黏聚力随土体含水量的增加呈二次多项式函数关系递减,且其内摩擦角亦随着含水量增加而降低,当土体含水量由6%增加至22%时,黏聚力降低幅度为28.50% ~61.78%,内摩擦角降幅为38.73%。本项研究成果对于进一步探讨高寒干旱环境草本和灌木根-土复合体抗剪强度的影响因素,以及利用乡土优势植物开展植被护坡具有重要理论研究价值和实际指导意义。Abstract: This paper aims to deeply investigate the role of vegetation roots in faxing soil and increasing soil strength and probe into the influence of soil moisture content on soil strength. It selects Changlinggou catchment in Xining Basin as the tested site. Four types of local vegetation were chosen as the tested species. They are Caragana korshinskii Kom., Nitraria sphaerocarpa Maxim., Achnatherum splendens(Trin.)Nevski, and Agropyron trachycaulum Linn. Gaertn. Five sets of undisturbed and remolded rooted soil with soil moisture contents increasing from 6% to 22% were prepared for indoor direct shear tests. The results show that all of the vegetation roots possess a capacity of significantly resisting deformation of rooted soil, but as moisture contents increase, the root role in resisting soil deformation is reduced. At the same moisture content, the cohesion of rooted soil is generally larger than that of non-rooted soil. The growth rate of cohesion is 1.94~12.17 kPa and the growth amplitude is 34.50% ~360.69% in comparison to the non-rooted soil. However, the same trend did not occur in the internal friction angle. A binomial function can describe the relation of soil moisture content with its cohesion for all of the soil. Moreover, as the moisture content increases from 6% to 22%, the cohesion declines from 28.50% to 61.78% and the internal friction angle declines by 38.73%. The works possess theoretical and practical significance on further exploring the factors influencing the shear strength of herb and shrub root-soil composite systems, adopting dominant local plants to carry out slope protection, and effectively preventing and controlling regional soil erosion, shallow landslide and other geological disasters.
-
Key words:
- Xining Basin /
- Cold-arid environment /
- Soil water content /
- Root-soil composite system /
- Shear strength
-
图 8 灌木与草本植物护坡作用示意图(李国荣等,2007;略作改动)
Figure 8. Schematic diagram of shrub and herb slope protection function
表 1 试验区边坡土体物理性质指标试验结果(刘亚斌等,2020)
Table 1. The experiment results of physical properties of slope soil in testing area
深度
/cm平均干密度
/g·cm-3平均含
水量/%液限
WL/%塑限
WP/%液性
指数IL塑性
指数IP土粒组成/% 不均匀
系数Cu土质
类型0.25~0.075 mm 0.075~0.005 mm <0.005 mm 0~100 1.25±0.06 9.12 24.6 17.2 -0.97 7.40 30.10 62.6 7.30 3.90 粉土 表 2 试验区素土与4种植物根-土复合体试样黏聚力的增长量和增长幅度计算结果
Table 2. The growth amount and amplitude of cohesion of rooted soil in testing area
试样类型 黏聚力增长量Δc/kPa 黏聚力增长幅度/% ω=6% ω=10% ω=14% ω=18% ω=22% ω=6% ω=10% ω=14% ω=18% ω=22% 素土 — — — — — — — — — — 柠条锦鸡儿根-土复合体 12.17 11.89 12.13 11.61 11.47 146.27 184.63 260.86 305.53 360.69 白刺根-土复合体 9.75 8.63 9.42 8.54 8.01 117.19 134.01 202.58 224.74 251.89 芨芨草根-土复合体 7.30 6.38 6.24 5.87 5.34 87.74 99.07 134.19 154.47 167.92 细茎冰草根-土复合体 2.87 2.78 2.43 2.23 1.94 34.50 43.17 52.26 58.68 61.01 表 3 试验区素土与4种植物根-土复合体黏聚力值及其与含水量之间的拟合方程
Table 3. The cohesion of soil without root and rooted soil and its fitting equation with water content in testing area
试样类型 黏聚力c/kPa 拟合方程 相关系数R2 ω=6% ω=10% ω=14% ω=18% ω=22% 素土 8.32 6.44 4.65 3.80 3.18 y=12.421 43-0.7705x+0.015 89x2 0.998 28 柠条锦鸡儿根-土复合体 20.49 18.33 16.78 15.41 14.65 y=24.423 79-0.7375x+0.0133x2 0.999 52 白刺根-土复合体 18.07 15.07 14.07 12.34 11.19 y=22.764 04-0.916x+0.017 99x2 0.992 57 芨芨草根-土复合体 15.62 12.82 10.89 9.67 8.52 y=20.417 82-0.923x+0.017 54x2 0.998 01 细茎冰草根-土复合体 11.19 9.22 7.08 6.03 5.12 y=15.549 54-0.8025x+0.014 87x2 0.997 05 -
Chen H B, Chen X J, Qi Y L, et al. 2019. Effects of dry density and moisture content on shear strength parameters of remolded red clay soil[J]. Journal of Engineering Geology, 27 (5): 1035-1040. Chen W T, Wang M N, Wang Y, et al. 2006. Influence of salt content and water content on the shearing strength parameters of chlorine saline soil[J]. China Railway Science, 27 (4): 1-5. Fan C C, Chen Y W. 2010. The effect of root architecture on the shearing resistance of root-permeated soils[J]. Ecological Engineering, 36 (6): 813-826. doi: 10.1016/j.ecoleng.2010.03.003 Fan C C, Su C F. 2008. Role of roots in the shear strength of root-reinforced soils with high moisture content[J]. Ecological Engineering, 33 (2): 157-166. doi: 10.1016/j.ecoleng.2008.02.013 Gao H D, Pang G W, Li Z B, et al. 2017. Evaluating the potential of vegetation restoration in the Loess Plateau[J]. Acta Geographica Sinica, 72 (5): 863-874. Hu X S, Brierley G, Zhu H L, et al. 2013. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 10(4): 668-686. doi: 10.1007/s11629-013-2584-x Hu X S, Li G R, Zhu H L, et al. 2009. Research on interaction between vegetation root and soil for slope protection and its mechanical effect in cold and arid environments[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (3): 613-620. Hu X S, Mao X Q, Zhu H L, et al. 2011. Slope protection with vegetation on Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House. Hu X T, Yu D M, Fu J T, et al. 2015. An experimental research on shear strength of halophytes root-soil complexes in salt lake area of Qaidam Basin[J]. Journal of Glaciology and Geocryology, 37 (6): 1579-1590. Huang Q Q, Ren F F. 2019. A research review of the stability of reinforced soil structures with consideration of dynamic load and rainfall[J]. Journal of Engineering Geology, 27 (S): 311-318. Huang R Q, Qi G Q. 2002. The effect of unsaturated soil suction on slope stability[J]. Journal of Engineering Geology, 10 (4): 343-348. Huo C C, Qian H, Meng X Y. 2017. Experimental study on shear strength indices of unsaturated remolded Lishi Loess[J]. Yellow River, 39 (3): 127-131. Li F, Wang G J, Zhang J C, et al. 2012. Soil mechanics and foundation engineering[M]. Wuhan: Wuhan University of Technology Press. Li G R, Mao X Q, Ni S C, et al. 2007. Brief analysis of the effect of slope protection by shrub grass vegetation[J]. Pratacultural Science, 24 (6): 86-89. Li Y Z, Fu J T, Hu X S, et al. 2016. Experimental study of the influence of grain size on the shear strength of rooted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (2): 403-412. Li Y Z, Fu J T, Yu D M, et al. 2015. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (7): 1370-1383. Lian B Q, Peng J B, Zhan H B, et al. 2019. Mechanical response of root-reinforced loess with various water contents[J]. Soil & Tillage Research, 193 : 85-94. Liu Y B, Li S X, Yu D M, et al. 2018. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 34 (15): 157-166. Liu Y L, Liu X L, Fu X, et al. 2016. Experimental study on influence of plant roots to shear strength of low liquid limit silty clay at shallow depth of slope[J]. Journal of Engineering Geology, 24 (3): 384-490. Liu Y B, Hu X S, Yu D M, et al. 2020. Distribution characteristics of combined herb and shrub roots in loess area of Xining Basin and their effect on enhancing soil shear strength[J]. Journal of Engineering Geology, 28 (3): 471-481. Lu H Y, Wang X Y, Jef V. 2014. Landform evolution and the uplift of northeastern Tibetan Plateau[J]. Chinese Journal of Nature, 36 (3): 176-181. Normaniza O, Faisal H A, Barakbah S S. 2008. Engineering properties of Leucaena leucocephala for prevention of slope failure[J]. Ecological Engineering, 32 (3): 215-221. doi: 10.1016/j.ecoleng.2007.11.004 Pan J Y, Hou D Y, Li R J, et al. 2018. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology, 26 (5): 1170-1177. Pei H. 2012. Study on the water resource optimize-allocation of Xining City[D]. Handan: Hebei University of Engineering. Pollen N. 2007. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture[J]. Catena, 69 (3): 197-205. doi: 10.1016/j.catena.2006.05.004 Sun P, Wang G, Li R J, et al. 2019. Study of field test of loess slope under the artificial rainfall condition[J]. Journal of Engineering Geology, 27 (2): 466-476. Sun Y. 2013. The development characteristics and stability analysis of Xining loess landslide-Take the Xiaoyoushan landslide as example[D]. Xi'an: Chang'an University. The Professional Standards Compilation Group of People's Republic of China. 1999. Soil test procedures(SL237-1999)[S]. Beijing: China Water Power Press. Tosi M. 2007. Root tensile strength relationships and their slope stability implications of three shrub species in the northern apennines(Italy)[J]. Geomorphology, 84 (4): 268-283. Waldron L J. 1977. The shear resistance of root permeated homogeneous sands tratified[J]. Soil Science Society of America Journal, 41 (5): 843-849. doi: 10.2136/sssaj1977.03615995004100050005x Wang Y H, Zhang X. 2011. Analysis on the characteristic and change trend of precipitation in Xining city[J]. Research of Soil and Water Conservation, 18 (5): 156-160. Wang Y L. 2014. Research on the strength characteristics of loess sulphate saline soil improved with line[D]. Lanzhou: Lanzhou University of Technology. Wei J, Shi B L, Li J L, et al. 2018. Shear strength of purple soil bunds under different soil water contents and dry densities: A case study in the Three Gorges Reservoir Area, China[J]. Catena, 166 : 124-133. doi: 10.1016/j.catena.2018.03.021 Yang F, Liu L. 2012. Study on occurrence pattern and trend of drought in east Qinghai Province[J]. Arid Zone Research, 29 (2): 284-288. Yang Y Q, Hu X S, Li X L, et al. 2018. An experimental study of the soil shear strength reinforcement of a mine dump slope by herbaceous root systems in alpine regions[J]. Hydrogeology & Engineering Geology, 45 (6): 105-113. Yu D M, Fu J T, Hu X S, et al. 2017. Experimental research on mechanical strength of rooted soil of halophytes in Da Qaidam salt lake area in the Qaidam Basin, Qinghai Province[J]. Journal of Salt Lake Research, 25 (1): 37-48. Yu D M, Qi Z X, Liu Y B, et al. 2019. Factors affecting shear strength and contribution evaluation of root-soil composite system of five halophytes in the salt lake region of Northwest Qaidam Basin, Qinghai Province[J]. Research of Soil and Water Conservation, 26 (4): 157-165. Zhang A G, Li R, Yang Q K. 2001. Study on soil anti-shearing intensity of water erosion in China[J]. Bull Soil Water Conservation, 21 (3): 5-9. Zhang C B, Chen L H, Liu X P. 2009. Triaxial compression test of loess-root composites to evaluate mechanical effect of roots on reinforcing soil[J]. Journal of Soil and Water Conservation, 23 (2): 57-60. Zhang C B, Chen L H, Liu Y P, et al. 2010. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering, 36 (1): 19-26. doi: 10.1016/j.ecoleng.2009.09.005 Zhang W G, Liu W M, Xue Q J. 2000. Tribological properties of (Ca, Mg)-Sialon lubricated with various sodium salt solutions[J]. Tribology, 20 (1): 14-17. Zhang X Y. 2012. Geotechnical engineering properties and impact of Tertiary strata in Xining[J]. Journal of Railway Engineering Society, 29 (8): 20-23. Zhang Y, Zhong X Y, Lin J S, et al. 2020. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China[J]. Geomorphology, 351 : 1-10. Zhou D P, Zhang J Y. 2003. Bio-geotechnical technology of vegetation[M]. Beijing: China Communications Press. 陈鸿宾, 陈学军, 齐运来, 等. 2019. 干密度与含水率对重塑红黏土抗剪强度参数影响研究[J]. 工程地质学报, 27 (5): 1035-1040. doi: 10.13544/j.cnki.jeg.2019025 陈炜韬, 王明年, 王鹰, 等. 2006. 含盐量及含水量对氯盐盐渍土抗剪强度参数的影响[J]. 中国铁道科学, 27 (4): 1-5. doi: 10.3321/j.issn:1001-4632.2006.04.001 高海东, 庞国伟, 李占斌, 等. 2017. 黄土高原植被恢复潜力研究[J]. 地理学报, 72 (5): 863-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201705009.htm 胡夏嵩, 李国荣, 朱海丽, 等. 2009. 寒旱环境灌木植物根-土相互作用及其护坡力学效应[J]. 岩石力学与工程学报, 28 (3): 613-620. doi: 10.3321/j.issn:1000-6915.2009.03.022 胡夏嵩, 毛小青, 朱海丽, 等. 2011. 青藏高原植被护坡[M]. 北京: 地质出版社. 虎啸天, 余冬梅, 付江涛, 等. 2015. 柴达木盆地盐湖区盐生植物根-土复合体抗剪强度试验研究[J]. 冰川冻土, 37 (6): 1579-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201506017.htm 黄强强, 任非凡. 2019. 动荷载及降雨影响下加筋土结构稳定性研究现状综述[J]. 工程地质学报, 27(增): 311-318. doi: 10.13544/j.cnki.jeg.2019088 黄润秋, 戚国庆. 2002. 非饱和渗流基质吸力对边坡稳定性的影响[J]. 工程地质学报, 10 (4): 343-348. doi: 10.3969/j.issn.1004-9665.2002.04.002 霍晨琛, 钱会, 孟祥仪. 2017. 非饱和重塑Q2黄土抗剪强度指标试验研究[J]. 人民黄河, 39 (3): 127-131. doi: 10.3969/j.issn.1000-1379.2017.03.030 李飞, 王贵君, 张季超, 等. 2012. 土力学与基础工程[M]. 武汉: 武汉理工大学出版社. 李国荣, 毛小青, 倪三川, 等. 2007. 浅析灌木和草本植物护坡效应[J]. 草业科学, 24 (6): 86-89. doi: 10.3969/j.issn.1001-0629.2007.06.019 栗岳洲, 付江涛, 胡夏嵩, 等. 2016. 土体粒径对盐生植物根-土复合体抗剪强度影响的试验研究[J]. 岩石力学与工程学报, 35 (2): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602022.htm 栗岳洲, 付江涛, 余冬梅, 等. 2015. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报, 34 (7): 1370-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507010.htm 刘亚斌, 胡夏嵩, 余冬梅, 等. 2020. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应[J]. 工程地质学报, 28 (3): 471-481. doi: 10.13544/j.cnki.jeg.2019-114 刘亚斌, 李淑霞, 余冬梅, 等. 2018. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报, 34 (15): 157-166. doi: 10.11975/j.issn.1002-6819.2018.15.020 刘益良, 刘晓立, 付旭, 等. 2016. 植物根系对低液限粉质黏土边坡浅层土体抗剪强度影响的试验研究[J]. 工程地质学报, 24 (3): 384-390. doi: 10.13544/j.cnki.jeg.2016.03.007 鹿化煜, 王先彦, Vandenberghe. 2014. 青藏高原东北部地貌演化与隆升[J]. 自然杂志, 36 (3): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201403005.htm 潘俊义, 侯大勇, 李荣建, 等. 2018. 不同雨强下黄土边坡降雨入渗测试与分析[J]. 工程地质学报, 26 (5): 1170-1177. doi: 10.13544/j.cnki.jeg.2018042 裴浩. 2012. 西宁市水资源优化配置研究[D]. 邯郸: 河北工程大学. 孙萍, 王刚, 李荣建, 等. 2019. 降雨条件下黄土边坡现场试验研究[J]. 工程地质学报, 27 (2): 466-476. doi: 10.13544/j.cnki.jeg.2018-031 孙毅. 2013. 西宁市黄土滑坡发育特征及稳定性分析——以小酉山滑坡为例[D]. 西安: 长安大学. 王颖华, 张鑫. 2011. 西宁市降水量特征及变化趋势分析[J]. 水土保持研究, 18 (5): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201105034.htm 王月礼. 2014. 灰土改良黄土状硫酸盐渍土强度特性的研究[D]. 兰州: 兰州理工大学. 杨芳, 刘露. 2012. 青海东部干旱发生规律及其变化趋势[J]. 干旱区研究, 29 (2): 284-288. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201202014.htm 杨幼清, 胡夏嵩, 李希来, 等. 2018. 高寒矿区草本植物根系增强排土场边坡土体抗剪强度试验研究[J]. 水文地质工程地质, 45 (6): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201806016.htm 余冬梅, 付江涛, 胡夏嵩, 等. 2017. 柴达木盆地大柴旦盐湖区盐生植物根-土复合体力学强度试验研究[J]. 盐湖研究, 25(1): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201701006.htm 余冬梅, 祁兆鑫, 刘亚斌, 等. 2019. 青海柴达木盆地盐湖区5种盐生植物根-土复合体抗剪强度影响因素及评价[J]. 水土保持研究, 26 (4): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201904026.htm 张爱国, 李锐, 杨勤科. 2001. 中国水蚀土壤抗剪强度研究[J]. 水土保持通报, 21 (3): 5-9. doi: 10.3969/j.issn.1000-288X.2001.03.002 张超波, 陈丽华, 刘秀萍. 2009. 黄土高原刺槐根系固土的力学增强效应评价[J]. 水土保持学报, 23 (2): 57-60. doi: 10.3321/j.issn:1009-2242.2009.02.013 张文广, 刘维民, 薛群基. 2000. (Ca, Mg)—Sialon在几种含钠盐溶液润滑下的摩擦学特性[J]. 摩擦学学报, 20 (1): 14-17. doi: 10.3321/j.issn:1004-0595.2000.01.004 张晓宇. 2012. 西宁地区第三系地层岩土工程特性及影响[J]. 铁道工程学报, 29 (8): 20-23. doi: 10.3969/j.issn.1006-2106.2012.08.005 中华人民共和国行业标准编写组. 1999. 土工试验规程(SL237—1999)[S]. 北京: 中国水利水电出版社. 周德培, 张俊云. 2003. 植被护坡工程技术[M]. 北京: 人民交通出版社. -