MTS试验机岩石压缩试验变形测量数据的选取方法研究

靳一鼎 徐荣超 李日运 王四巍 袁广祥 李洪军

靳一鼎, 徐荣超, 李日运, 等. 2022. MTS试验机岩石压缩试验变形测量数据的选取方法研究[J]. 工程地质学报, 30(2): 293-300. doi: 10.13544/j.cnki.jeg.2020-007
引用本文: 靳一鼎, 徐荣超, 李日运, 等. 2022. MTS试验机岩石压缩试验变形测量数据的选取方法研究[J]. 工程地质学报, 30(2): 293-300. doi: 10.13544/j.cnki.jeg.2020-007
Jin Yiding, Xu Rongchao, Li Riyun, et al. 2022. Selection of deformation measurement data of rock under MTS compression tests[J]. Journal of Engineering Geology, 30(2): 293-300. doi: 10.13544/j.cnki.jeg.2020-007
Citation: Jin Yiding, Xu Rongchao, Li Riyun, et al. 2022. Selection of deformation measurement data of rock under MTS compression tests[J]. Journal of Engineering Geology, 30(2): 293-300. doi: 10.13544/j.cnki.jeg.2020-007

MTS试验机岩石压缩试验变形测量数据的选取方法研究

doi: 10.13544/j.cnki.jeg.2020-007
基金项目: 

国家自然科学基金 51709113

河南省科技攻关项目 222102320141

详细信息
    作者简介:

    靳一鼎(1995-),男,硕士生,主要从事岩石力学方面的试验与理论研究工作. E-mail: x201810206134@stu.ncwu.edu.cn

    通讯作者:

    徐荣超(1988-),男,博士,副教授,主要从事深部岩体力学方面的科研与教学工作. E-mail: rcxirsm@126.com

  • 中图分类号: P634.1

SELECTION OF DEFORMATION MEASUREMENT DATA OF ROCK UNDER MTS COMPRESSION TESTS

Funds: 

the National Natural Science Foundation of China 51709113

Key Research and Development Program of Henan Province 222102320141

  • 摘要: 变形测量数据的选取对认识岩石力学性质及变形参数的计算有着重要影响。MTS试验机已被广泛应用于岩石力学试验中,其中岩石的变形测量常用方式有引伸计、LVDT和压板位移,这3种测量方法得到的轴向应变的准确性和适用性有待深入研究。本研究采用MTS试验机进行岩石的单轴和三轴压缩试验,对比引伸计、压板位移和LVDT 3种方式测量得到的应力-应变曲线,分析3种不同测量方法的结果对岩样应力-应变曲线形态、强度和变形参数的影响。结果表明:峰值强度前,压板位移和LVDT测量得到的变形数据、计算的应力门槛值和变形参数存在较大误差,轴向应变应采用引伸计测量得到的变形数据;采用引伸计测量得到的变形数据在达到峰值强度后会出现轴向应变减小的现象,该曲线容易被误认为属于Ⅱ类曲线;建议在MTS试验机固定压头端安装LVDT传感器,采用LVDT测量得到的轴向变形计算峰值强度后的轴向应变;条件不允许安装LVDT传感器时,采用压板位移测量的数据来表示岩样在峰值强度后的变形。研究结果对于正确选用岩石变形测量数据、计算强度和变形参数以及认识岩石力学性质具有一定参考价值。
  • 图  1  岩石单轴压缩应力-应变曲线

    Figure  1.  Compression stress-strain curve of rock under uniaxial

    图  2  MTS815三轴试验机

    Figure  2.  MTS815 triaxial test system

    图  3  安装轴向引伸计的岩石试样

    Figure  3.  Rock sample installed with axial extensometer

    图  4  大理岩轴向引伸计和压板位移应力-应变曲线的比较

    Figure  4.  Comparison of stress-strain curves between axial extensometer and plate-displacement of marble

    图  5  花岗岩轴向引伸计和压板位移应力-应变曲线的比较

    Figure  5.  Comparison of stress-strain curves between axial extensometer and plate displacement of granite

    图  6  玄武岩轴向引伸计和压板位移应力-应变曲线的比较

    Figure  6.  Comparison of stress-strain curves between axial extensometer and plate displacement of basalt

    图  7  页岩三轴压缩试验的全应力-应变曲线的对比

    Figure  7.  Comparison of total stress-strain curves of triaxial compression test of shale

    图  8  轴向引伸计A、B的应力-应变曲线的比较

    Figure  8.  Comparison of stress-strain curves of axial extensometer A and B

    图  9  岩样破坏及LVDT安装示意图

    Figure  9.  Schematic diagram of sample failure and LVDT installation

    表  1  页岩三轴压缩试验3种测量方法下的强度及变形参数统计表

    Table  1.   Statistical table of strength and deformation parameters under three measurement methods of shale triaxial compression test

    测量方法 起裂强度σci /MPa 损伤强度σcd /MPa 弹性模量E /GPa 泊松比ν
    压板位移 113.37 193.76 14.391 0.1381
    引伸计 73.35 189.07 23.581 0.1927
    LVDT 99.97 191.12 14.929 0.1221
    下载: 导出CSV
  • Bieniawski Z T, Bernede M J. 1979. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2): 137-140.
    Chen G Q, Jian D H, Xu P, et al. 2018. Energy characteristics of brittle failure of granite rock bridge under unloading compression[J]. Journal of Engineering Geology, 26(3): 602-610.
    Chen S J, Guo W J, Liu J X, et al. 2010. Experiment on formation mechanism of rock class Ⅱ curve[J]. Journal of China Coal Society, 35 (S): 54-58.
    Dai G. 2015. Study on failure characteristics of rock under the influences of loading rate[D]. Fuxin: Liaoning Technical University.
    Du R F, Pei X J, Zhang X C, et al. 2019. Experiment study on energy response of argillaceous sandstone under cyclic loading[J]. Journal of Engineering Geology, 27(3): 505-515.
    Fairhurst C E, Hudson J A. 1999. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 36 : 279-289. doi: 10.1016/S0148-9062(99)00006-6
    He B, Xie L Z, Li F X, et al. 2017. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica Physica, Mechanica & Astronomica, 47(11): 103-114.
    Hou H T, Zhang S, Wu G F. 2015. Influence of stress distribution regulation of sample ends on uniaxial compression with Pad[J]. Journal of Anhui University of Science and Technology(Natural Science), 35(3): 59-62.
    Hou Z K, Yang C H, Guo Y T, et al. 2015. Experimental study of anisotropic properties of Longmaxi formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 36(9): 2541-2550.
    Hu G, Zhao Q H, He Y S, et al. 2016. Elastic modulus's evolution law of plagiogranite under cyclic loading[J]. Journal of Engineering Geology, 24(5): 881-890.
    Internation Society for Rock Mechanics Commission on Stadardiztion of Laboratory and Field Texts. 1982. Suggested methods for rock mechanics tests[M]. Beijing: China Coal Industry Publishing House.
    Kovari K, Tisa A, Einstein H H, et al. 1983. Suggested methods for determining the strength of rock materials in triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 20(6): 285-290. doi: 10.1016/0148-9062(83)90598-3
    Liu X Y. 2015. Reasearch of end friction effect under true triaxial compression experiments[D]. Shenyang: Northeastern University.
    Lockner D A, Byerlee J D, Kuksenko V, et al. 1991. Quasi-static fault growth and shear fracture energy in granite[J]. Nature, 350 : 39-42. doi: 10.1038/350039a0
    Mai G, Tang Z P, Tang X W. 2013. Numerical simulation of rock's end constraint effect under uniaxial compression[J]. Journal of Yangtze River Scientific Research Institute, 30(6): 68-71.
    Munoz H, Taheri A, Chanda E K. 2016. Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation[J]. Rock Mechanics and Rock Engineering, 49(7): 2541-2554. doi: 10.1007/s00603-016-0935-y
    Tang H Y, Li S L. 2004. MTS815 full-digitally servo-controlled rock mechanics testing machine and its application[J]. Mining Research and Development, 24(3): 28-31.
    Vogler U, Stacey T R. 2016. The influence of test specimen geometry on the laboratory-determined Class Ⅱ characteristics of rocks[J]. Journal of the South African Institute of Mining and Metallurgy, 116(11): 987-1000. doi: 10.17159/2411-9717/2016/v116n11a1
    Wang B, Zhu J B, Wu A Q. 2010. Some improvements of deformation measurement techniques on MTS 815.04 system[J]. Journal of Yangtze River Scientific Research Institute, 27(12): 94-98.
    Wang C L, Li R B, Han Y, et al. 2018. Study on mechanical characteristics and fracture evolution of Beishan granite under triaxial compression[J]. Journal of Forestry Engineering, 3(4): 151-158.
    Wawersik W, Fairhurst C. 1970. A study of brittle rock fracture in laboratory compression experiments[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 7 : 561-575. doi: 10.1016/0148-9062(70)90007-0
    Wong L N Y, Meng F, Guo T, et al. 2019. The role of load control modes in determination of mechanical properties of granite[J]. Rock Mechanics and Rock Engineering, doi: 10.1007/s00603-019-01924-3.
    Xue J H, Yu G F. 2008. Numerical experiment research on end effect of rock uniaxial compression test[J]. Journal of Anhui Institute of Architecture and Industry, 16(2): 23-25.
    Yang G S, Sun J. 2001. On the present state and development of rock mechanics in China[J]. Journal of Xi'an Highway University, 21(3): 5-9.
    Yin X M, Yan E C, Cui X J, et al. 2017. Characteristic of strength anisotropy and failure modes of schist[J]. Jorunal of Engineering Geology, 25(4): 943-952.
    Zhang X P, Wang S J, Han G Y, et al. 2011. Crack propagation study of rock based on uniaxial compressive text-A case study of schistose rock[J]. Chinese Journal of Rock Mechanics and Engineering, 30(9): 1772-1781.
    Zhong Z B, Deng R G, Lü L, et al. 2017. Comprehensive stiffness technique used in deformation analysis of hard and brittle rhyolite with fissures[J]. Journal of Engineering Geology, 25(4): 935-942.
    Zhou H, Meng F Z, Lu J J, et al. 2014. Discussion on methods for calculating crack initiation strength and crack damage strength for hard rock[J]. Rock and Soil Mechanics, 35(4): 913-918.
    Zhou H, Yang F J, Zhang C Q, et al. 2012. An elastoplastic coupling mechanical model for marble considering confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering, 31(12): 2389-2399.
    陈国庆, 简大华, 徐鹏, 等. 2018. 花岗岩岩桥卸荷脆性破坏的能量特征[J]. 工程地质学报, 26(3): 602-610. doi: 10.13544/j.cnki.jeg.2017-114
    陈绍杰, 郭惟嘉, 刘进晓, 等. 2010. 岩石Ⅱ类曲线形成机制的试验研究[J]. 煤炭学报, 35 (S): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2010S1013.htm
    戴罡. 2015. 加载速率影响下岩石试件破坏特性研究[D]. 阜新: 辽宁工程技术大学.
    杜瑞锋, 裴向军, 张晓超, 等. 2019. 泥质砂岩在循环荷载作用下能量响应规律的试验研究[J]. 工程地质学报, 27(3): 505-515. doi: 10.13544/j.cnki.jeg.2018-261
    国际岩石力学学会试验室和现场试验标准委员会. 1982. 岩石力学试验建议方法[M]. 北京: 煤炭工业出版社.
    何柏, 谢凌志, 李凤霞, 等. 2017. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学(物理学力学天文学), 47(11): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
    侯宏涛, 张盛, 吴国峰. 2015. 垫块对单轴压缩试样端部应力分布规律的影响[J]. 安徽理工大学学报(自然科学版), 35(3): 59-62. doi: 10.3969/j.issn.1672-1098.2015.03.015
    侯振坤, 杨春和, 郭印同, 等. 2015. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 36(9): 2541-2550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm
    胡广, 赵其华, 何云松, 等. 2016. 循环荷载作用下斜长花岗岩弹性模量演化规律[J]. 工程地质学报, 24(5): 881-890. doi: 10.13544/j.cnki.jeg.2016.05.018
    刘晓宇. 2015. 岩石真三轴试验端部效应评估与减摩研究[D]. 沈阳: 东北大学.
    麦戈, 唐照平, 唐欣薇. 2013. 岩石单轴压缩端部效应的数值仿真分析[J]. 长江科学院院报, 30(6): 68-71. doi: 10.3969/j.issn.1001-5485.2013.06.015
    唐海燕, 李庶林. 2004. MTS815全数字型液压伺服试验机及其应用[J]. 矿业研究与开发, 24(3): 28-31. doi: 10.3969/j.issn.1005-2763.2004.03.009
    汪斌, 朱杰兵, 邬爱清. 2010. MTS815系统变形测试技术的若干改进[J]. 长江科学院学报, 27(12): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201012024.htm
    王传乐, 李二兵, 韩阳, 等. 2018. 三轴压缩条件下北山花岗岩的力学特性及破裂演化[J]. 林业工程学报, 3(4): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201804026.htm
    薛俊华, 余国峰. 2008. 岩石单轴压缩端部效应的数值实验研究[J]. 安徽建筑工业学院学报(自然科学版), 16(2): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG200802004.htm
    杨更社, 孙钧. 2001. 中国岩石力学的研究现状及其展望分析[J]. 西安公路交通大学学报, 21(3): 5-9. doi: 10.3321/j.issn:1671-8879.2001.03.002
    尹晓萌, 晏鄂川, 崔学杰, 等. 2017. 片岩强度各向异性及破坏模式分析[J]. 工程地质学报, 25(4): 943-952. doi: 10.13544/j.cnki.jeg.2017.04.007
    张晓平, 王思敬, 韩庚友, 等. 2011. 岩石单轴压缩条件下裂纹扩展试验研究——以片状岩石为例[J]. 岩石力学与工程学报, 30(9): 1772-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109008.htm
    钟志彬, 邓荣贵, 吕蕾, 等. 2017. 硬脆性流纹岩变形分析的综合刚度法[J]. 工程地质学报, 25(4): 935-942. doi: 10.13544/j.cnki.jeg.2017.04.006
    周辉, 杨凡杰, 张传庆, 等. 2012. 考虑围压效应的大理岩弹塑性耦合力学模型研究[J]. 岩石力学与工程学报, 31(12): 2389-2399. doi: 10.3969/j.issn.1000-6915.2012.12.002
    周辉, 孟凡震, 卢景景, 等. 2014. 硬岩裂纹起裂强度和损伤强度取值方法探讨[J]. 岩土力学, 35(4): 913-918. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404001.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  37
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-02-26
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回