火后泥石流流域坡面侵蚀物源动储量估算方法探讨

杨瀛 胡卸文 王严 金涛 曹希超 韩玫

杨瀛,胡卸文,王严,等. 2021.火后泥石流流域坡面侵蚀物源动储量估算方法探讨[J].工程地质学报,29(1):151-161. doi:10.13544/j.cnki.jeg.2020-008 doi: 10.13544/j.cnki.jeg.2020-008
引用本文: 杨瀛,胡卸文,王严,等. 2021.火后泥石流流域坡面侵蚀物源动储量估算方法探讨[J].工程地质学报,29(1):151-161. doi:10.13544/j.cnki.jeg.2020-008 doi: 10.13544/j.cnki.jeg.2020-008
Yang Ying, Hu Xiewen, Wang Yan, et al. 2021. Preliminary study on methods to calculate dynamic reserves of slope erosioning materials transported by post-fire debris flow[J]. Journal of Engineering Geology, 29(1): 151-161. doi: 10.13544/j.cnki.jeg.2020-008
Citation: Yang Ying, Hu Xiewen, Wang Yan, et al. 2021. Preliminary study on methods to calculate dynamic reserves of slope erosioning materials transported by post-fire debris flow[J]. Journal of Engineering Geology, 29(1): 151-161. doi: 10.13544/j.cnki.jeg.2020-008

火后泥石流流域坡面侵蚀物源动储量估算方法探讨

doi: 10.13544/j.cnki.jeg.2020-008
基金项目: 

国家自然科学基金 41731285

国家自然科学基金 41672283

国家自然科学基金 41907225

地质灾害防治与地质环境保护国家重点实验室开放式基金 SKLGP2018K011

详细信息
    作者简介:

    杨瀛(1992-),男,博士生,主要从事工程地质方面的研究工作. E-mail: yangying@my.swjtu.edu.cn

    通讯作者:

    胡卸文(1963-),男,博士,教授, 博士生导师,主要从事工程地质、环境地质方面的教学与研究工作. E-mail:huxiewen@163.com

  • 中图分类号: P642.23

PRELIMINARY STUDY ON METHODS TO CALCULATE DYNAMIC RESERVES OF SLOPE EROSIONING MATERIALS TRANSPORTED BY POST-FIRE DEBRIS FLOW

Funds: 

the National Natural Science Foundation of China 41731285

the National Natural Science Foundation of China 41672283

the National Natural Science Foundation of China 41907225

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (China) Open Fund SKLGP2018K011

  • 摘要: 火后泥石流具有易发、突发等特征,尤其在林火发生当年异常活跃,林火干扰会加剧土壤侵蚀,若将常规泥石流坡面侵蚀物源动储量估算方法应用于火后泥石流将使计算结果偏小,会导致拦砂坝等治理工程库容设计有效性不足。本文采用修正通用土壤流失方程(RUSLE),以四川省雅江县八角楼乡火烧迹地D4流域为例,通过野外调查、室内外试验、遥感解译等手段,计算了研究区的坡面侵蚀物源动储量。结果表明:在火后5年内,D4流域坡面侵蚀物源动储量约为3.28×104 m3,中度和重度火烧区贡献量较大,合计占比高达93.90%。随着后期植被恢复和土壤物理及水文地质性质改善,坡面土壤侵蚀模数将会降低,坡面侵蚀物源动储量也随之减少。该研究成果对火后泥石流应急治理工程(如拦砂坝等)的库容、结构设计具有指导借鉴意义。
  • 图  1  研究区林火范围及主要火后泥石流冲沟分布工程地质图

    Figure  1.  Engineering geological plan of distribution of burnt area and main post-fire debris flow gully in the study area

    图  2  火烈度及各计算因子栅格图

    a.火烈度;b.坡长因子L;c.坡度因子S;d.植被覆盖率fg;e.植被覆盖因子C;f.土壤可蚀性因子K;g.土壤侵蚀模数A(t·km2·a)

    Figure  2.  Fire intensity and calculation factor grid diagram

    表  1  D4流域基本地形特征参数

    Table  1.   Basic topographic parameters of the D4 watershed

    流域编号 主沟长/km 流域面积/km2 主沟纵比降/‰ 相对高差/m >30°坡面积占比/%
    D4 3.35 2.20 395.28 1445 55.67
    下载: 导出CSV

    表  2  火烈度判别特征

    Table  2.   Determining criterion for the fire severity

    火烈度 特点
    未火烧 火烧前后地表覆盖物无变化
    轻度 超过50%的枯枝落叶未完全燃烧
    中度 大部分枯枝落叶被烧毁,但是大部分粗可燃物未完全燃烧
    严重 枯枝落叶和粗可燃物均被完全烧毁,地表被灰烬覆盖
    下载: 导出CSV

    表  3  不同植被覆盖的P

    Table  3.   P values under different vegetation cover types

    坡度/(°) 无保护措施 非等高耕作 等高耕作 草田带状间作 水平梯田 水平沟 等高垄作
     5 0.3 0.1 0.01 0.1
    5~10 1 0.75 0.5 0.1 0.03 0.05 0.1
    >10 0.6 0.2 0.10 0.3
    下载: 导出CSV

    表  4  D4流域火烈度分布统计表

    Table  4.   Statistical table of the fire intensity distribution in D4 basin

    火烧区总面积(km2)/占比(%) 各火烈度面积(km2)/占比(%)
    重度
    dNBR≥580
    中度
    270≤dNBR < 580
    轻度
    99≤dNBR < 270
    未火烧
    0 < dNBR < 99
    2.08/94.38 1.17/52.94 0.75/34.20 0.16/7.24 0.12/5.62
    下载: 导出CSV

    表  5  D4流域地形因子特征值

    Table  5.   Terrain factor characteristic value of D4 watershed

    特征值 坡度/(°) 坡长/m 坡度因子S 坡长因子L
    最小值 1.07 30.01 0.23 1.10
    最大值 61.81 79.45 18.33 1.89
    平均值 31.41 43.58 10.28 1.40
    标准差 10.03 8.74 3.25 0.14
    下载: 导出CSV

    表  6  D4流域植被覆盖率及植被覆盖因子特征值

    Table  6.   Vegetation coverage ratio and vegetation cover factor characteristic value of D4 watershed

    特征值 最大值 最小值 平均值 标准差 未火烧区均值 轻度火烧区均值 中度火烧区均值 重度火烧区均值
    植被覆盖率/% 100 0 24.51 19.75 62.42(0.30) 46.93(0.26) 22.26(0.15) 16.65(0.05)
    C因子 0.63 0 0.20 0.09 0.08(0.13) 0.12(0.12) 0.21(0.08) 0.23(0.04)
      括号中数据为标准差
    下载: 导出CSV

    表  7  土壤可蚀性因子计算参数取值

    Table  7.   Calculation parameters of soil erodibility factor

    火烈度 有机碳含量/% 土壤质地 土壤可蚀性因子K/t·ha·KJ-1·mm-1
    砂粒/% 粉砂/% 黏粒/%
    未烧 8.54 36.70 18.63 1.23 0.0329
    轻度 10.63 30.67 19.47 0.84 0.0351
    中度 6.17 30.71 20.05 0.52 0.0353
    重度 6.88 31.17 24.80 0.39 0.0358
    下载: 导出CSV

    表  8  D4流域侵蚀强度分级

    Table  8.   Classification of erosion intensity of D4 watershed

    侵蚀强度分级 侵蚀模数/t·km-2·a-1 像元个数/个 面积/km2 面积百分比/%
    微度(Ⅰ) < 500 142 0.12 5.45
    轻度(Ⅱ) 500~2500 182 0.16 7.27
    中度(Ⅲ) 2500~5000 362 0.32 14.55
    强烈(Ⅳ) 5000~8000 694 0.61 27.73
    极强(Ⅴ) 8000~15000 829 0.73 33.18
    剧烈(Ⅵ) >15000 298 0.26 11.82
    下载: 导出CSV

    表  9  各参数取值及坡面侵蚀物源动储量估算结果

    Table  9.   The value of each parameter and the estimation result of slope erosion source dynamic reserves

    火烈度 土壤干容重/t·m-3 泥沙输移比 设计年限/a 动储量/×104m3 动储量占比/% 总动储量/×104m3
    未烧 1.33 0.41 5 0.09 2.75 3.28
    轻度 1.28 0.11 3.35
    中度 1.22 1.09 33.23
    重度 1.20 1.99 60.67
    下载: 导出CSV
  • Bu X H, Tang C, Jiang Z L, et al. 2016. Sources volume model and accumulation evolution of debris flow in Wenchuan earthquake region[J]. Journal of Engineering Geology, 24(1): 73-77.
    Bughici T, Wallach R. 2016. Formation of soil-water repellency in olive orchards and its influence on infiltration pattern[J]. Geoderma, 262: 1-11. doi: 10.1016/j.geoderma.2015.08.002
    Cai C F, Ding S W, Shi Z H, et al. 2000. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 14(2): 19-24.
    Chen J, Chen Y H, He C Y, et al. 2001. Sub-pixelmodel for vegetation fraction estimation based on land cover classification[J]. Journal of Remote Sensing, 5(6): 416-422.
    Chen Z L. 2016. Reasearch on development characteristic and genetic mechanism of the post-fire debris flow in Reneyong ravine[D]. Chengdu: Chengdu University of Technology.
    Di X Y, Tao Y Z. 2013. Research progress in post-fire debris flow[J]. Chinese Journal of Applied Ecology, 24(8): 2383-2392.
    Gao X B, Sun H C, Zhao Y J, et al. 2007. Sediment delivery ratio and spatial scale effect of small watershed in the hilly area of central Sichuan Province[J]. Bulletin of Soil and Water Conservation, 27(6): 130-133, 151.
    Guo H Z, Zhao T N, Li X G, et al. 2004. Study on prediction model and intensity classification of soil erosion in Jieba Mountain[J]. Research of Soil and Water Conservation, 11(3): 66-69, 119.
    He C Y, Xu Q, Ju N P, et al. 2018. Real-time early warning technology of debris flow based on automatic identification of rainfall process[J]. Journal of Engineering Geology, 26(3): 703-710.
    Hu X W, Wang Y, Yang Y. 2018. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology, 26(6): 1562-1573.
    Key C H, Benson N C. 2006. Landscape Assessment(LA)Sampling and Analysis Methods[M]. Firemon: Fire Effects Monitoring and Inventory System, Lutes D C, United States Department of Agriculture.
    Kong F, Wang Y F, Lü L L, et al. 2017. Comparison of slope length factor extraction in hillslope soil erosion model with different DEM resolution[J]. Journal of Anhui Agricultural Sciences, 45(29): 104-108, 123.
    Lane P N J, Sheridan G J, Noske P J. 2006. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia[J]. Journal of Hydrology, 331(3-4): 495-510. doi: 10.1016/j.jhydrol.2006.05.035
    Lanorte A, Cillis G, Calamita G, et al. 2019. Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region(Southern Italy)[J]. Geomatics Natural Hazards & Risk, 10(1): 1563-1595.
    Li N, Tang C, Bu X H, et al. 2020. Analysis of the characteristics and evolution of debris flow in Wenchuan county after the "5.12" earthquake[J/OL].Journal of Engineering Geology, https://doi.org/10.13544/j.cnki.jeg.2019-310.
    Liu B Y, Nearing M A, Risse L M. 2000. Slope gradient effects on soil loss for steep slopes[J]. Soil Science Society of America Journal, 64(5): 1759-1763. doi: 10.2136/sssaj2000.6451759x
    Ma X Z, Fan X S, Shu C L, et al. 2016. Effects of forest fire disturbance in different time series on soil properties and greenhouse gas flux in larix gmelinii forest of cold-temperate zone[J]. Ecology and Environment Sciences, 25(6): 939-946.
    Meyer G A, Wells S G. 1997. Fire-related sedimentation events on alluvial fans, Yellowstone National Park, USA[J]. Journal of Sedimentary Research, 67(5): 776-791.
    Ministry of Water Resources of the People's Republic of China. 1999. Standard for soil test method(GB/T 50123-1999)[S]. Beijing: China Planning Press.
    Ministry of Water Resources of the People's Republic of China. 2007. Standards for classification and gradation of soil erosion(SL 190-2007)[S]. Beijing: China Water & Power Press.
    Moody J A, Kinner D A, úbeda X. 2009. Linking hydraulic properties of fire-affected soils to infiltration and water repellency[J]. Journal of Hydrology, 379(3): 291-303.
    Nyman P, Smith H G, Sherwin C B, et al. 2015. Predicting sediment delivery from debris flows after wildfire[J]. Geomorphology, 250: 173-186. doi: 10.1016/j.geomorph.2015.08.023
    Parsons A, Robichaud P, Lewis S, et al. 2010. Field guide for mapping post-fire soil burn severity[R]. USDA Forest Service-General Technical Report RMRS-GTR: 243.
    Ren Y, Hu X W, Wang Y, et al. 2018. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology and Engineering Geology, 45(6): 150-156.
    Renard K G, Foster G R, Weesies G A, et al. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation(RUSLE)[J]. Agricultural Handbook,(703): 384.
    Rulli M C, Offeddu L, Santini M. 2013. Modeling post-fire water erosion mitigation strategies[J]. Hydrology and Earth System Sciences, 17(6): 2323-2337. doi: 10.5194/hess-17-2323-2013
    Sass O, Haas F, Schimmer C, et al. 2012. Impact of forest fires on geomorphic processes in the tyrolean limestone alps[J]. Geografiska Annaler: Series A-Physical Geography, 94(1): 117-133. doi: 10.1111/j.1468-0459.2012.00452.x
    Vieira D C S, Serpa D, Nunes J P C, et al. 2018. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models[J]. Environmental Research, 165: 365-378. doi: 10.1016/j.envres.2018.04.029
    Wang Y, Hu X W, Jin T, et al. 2019. Material initiation of debris flow reneration processes after hillsild fires[J]. Journal of Engineering Geology, 27(6): 1415-1423.
    Wen Q M, Zhong D. 2019. A method for calculating the amount of slope erosion material source of debris flow recommended[J]. Acta Geologica Sichuan, 39(2): 289-293, 298.
    Williams J R. 1990. EPIC: the Erosion-Productivity Impact Calculator[J]. Technical Bulletin-United States Department of Agriculture, 4(4): 206-207.
    Wischmeier W H, Johnson C B, Cross B V. 1971. Soil erodibility nomograph for farmland and construction sites[J]. Journal of Soil & Water Conservation, 26(5): 189.
    Wu Y P, Xie Y, Zhang W B. 2001. Comparison of different methods for estimating average annual rainfall erosivity[J]. Journal of Soil and Water Conservation, 15(3): 31-34.
    Xie W C, Li T H. 2012. Research comment on watershed sediment delivery ratio[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(4): 676-685.
    Yang M H, Yao Z H, Cao L H, et al. 2019. Spatial-temporal variation characteristics of soil erosion in Ji river demonstration zone based on RUSLE[J]. China Rural Water and Hydropower,(8): 178-185.
    Yang X, Zhu Q, Tulau M, et al. 2018. Near real-time monitoring of post-fire erosion after storm events: a case study in Warrumbungle National Park, Australia[J]. International Journal of Wildland Fire, 27(6): 413-424. doi: 10.1071/WF18011
    Zhang M, Hu H Q, Ma H W. 2002. Effect of forest fire on soil structure[J]. Journal of Natural Disasters, 11(2): 138-143.
    Zhang Y J, Wu Z W, Gu X L, et al. 2018. Effects of fire severity and recovery time on organic carbon content of forest soil in Great Xing'an mountains, China[J]. Chinese Journal of Applied Ecology, 29(8): 2455-2462.
    Zhu J, Chang M, Ding J, et al. 2012. Prediction for hazard zones of rainstorm induced debris flows in the wenchuan earthquake epicenters[J]. Journal of Engineering Geology, 20(1): 7-14.
    卜祥航, 唐川, 蒋志林, 等. 2016.强震区岷江沿岸泥石流物源体积估算模型与演变特征[J].工程地质学报, 24(1): 73-77. doi: 10.13544/j.cnki.jeg.2016.01.009
    蔡崇法, 丁树文, 史志华, 等. 2000.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 14(2): 19-24. doi: 10.3321/j.issn:1009-2242.2000.02.005
    陈晋, 陈云浩, 何春阳, 等. 2001.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报, 5(6): 416-422.
    陈子龙. 2016.仁额拥沟火后泥石流发育特征及成因机制研究[D].成都: 成都理工大学.
    邸雪颖, 陶玉柱. 2013.火后泥石流研究进展[J].应用生态学报, 24(8): 2383-2392.
    高旭彪, 孙厚才, 赵永军, 等. 2007.长江上游川中紫色土丘陵区小流域泥沙输移比空间尺度效应研究[J].水土保持通报, 27(6): 130-133, 151. doi: 10.3969/j.issn.1000-288X.2007.06.028
    郭宏忠, 赵廷宁, 李孝广, 等. 2004.接坝山地土壤水蚀、风蚀预报模型及强度分级研究-以丰宁满族自治县小坝子乡为例[J].水土保持研究, 11(3): 66-69, 119. doi: 10.3969/j.issn.1005-3409.2004.03.018
    何朝阳, 许强, 巨能攀, 等. 2018.基于降雨过程自动识别的泥石流实时预警技术[J].工程地质学报, 26(3): 703-710. doi: 10.13544/j.cnki.jeg.2017-189
    胡卸文, 王严, 杨瀛. 2018.火后泥石流成灾特点及研究现状[J].工程地质学报, 26(6): 1562-1573. doi: 10.13544/j.cnki.jeg.2018-073
    孔锋, 王一飞, 吕丽莉, 等. 2017.不同DEM分辨率下的坡面土壤侵蚀模型的坡长因子提取对比研究[J].安徽农业科学, 45(29): 104-108, 123. doi: 10.3969/j.issn.0517-6611.2017.29.033
    李宁, 唐川, 卜祥航, 等. 2020. "5·12"地震后汶川县泥石流特征与演化分析[J/OL].工程地质学报, https://doi.org/10.13544/j.cnki.jeg.2019-310.
    马秀枝, 范雪松, 舒常禄, 等. 2016.不同时间序列林火干扰对兴安落叶松林区土壤性质及温室气体通量的影响[J].生态环境学报, 25(6): 939-946.
    任云, 胡卸文, 王严, 等. 2018.四川省九龙县色脚沟火后泥石流成灾机理[J].水文地质工程地质, 45(6): 150-156.
    王严, 胡卸文, 金涛, 等. 2019.火后泥石流形成过程的物源启动模式研究[J].工程地质学报, 27(6): 1415-1423. doi: 10.13544/j.cnki.jeg.2019-197
    温清茂, 钟东. 2019.推荐一种泥石流坡面侵蚀物源量的计算方法[J].四川地质学报, 39(2): 289-293, 298. doi: 10.3969/j.issn.1006-0995.2019.02.023
    伍育鹏, 谢云, 章文波. 2001.国内外降雨侵蚀力简易计算方法的比较[J].水土保持学报, 15(3): 31-34. doi: 10.3321/j.issn:1009-2242.2001.03.009
    谢旺成, 李天宏. 2012.流域泥沙输移比研究进展[J].北京大学学报(自然科学版), 48(4): 676-685.
    杨孟豪, 姚志宏, 曹连海, 等. 2019.基于RUSLE的藉河示范区土壤侵蚀时空动态特征研究[J].中国农村水利水电,(8): 178-185. doi: 10.3969/j.issn.1007-2284.2019.08.037
    张敏, 胡海清, 马鸿伟. 2002.林火对土壤结构的影响[J].自然灾害学报, 11(2): 138-143. doi: 10.3969/j.issn.1004-4574.2002.02.024
    张宇婧, 吴志伟, 顾先丽, 等. 2018.火烧强度和火后恢复时间对大兴安岭森林土壤有机碳含量的影响[J].应用生态学报, 29(8): 2455-2462.
    中华人民共和国行业标准编写组. 2007.土壤侵蚀分类分级标准(SL 190-2007)[S].北京: 中国水利水电出版社.
    中华人民共和国行业标准编写组. 1999.土工试验方法标准(GB/T 50123-1999)[S].北京: 中国计划出版社.
    朱静, 常鸣, 丁军, 等. 2012.汶川震区暴雨泥石流危险范围预测研究[J].工程地质学报, 20(1): 7-14. doi: 10.3969/j.issn.1004-9665.2012.01.002
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  102
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-11
  • 修回日期:  2020-06-18
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回