静压桩沉桩过程中贯入机理理论研究进展

刘雪颖 王永洪 张明义 白晓宇

刘雪颖, 王永洪, 张明义, 等. 2022. 静压桩沉桩过程中贯入机理理论研究进展[J]. 工程地质学报, 30(2): 484-495. doi: 10.13544/j.cnki.jeg.2020-017
引用本文: 刘雪颖, 王永洪, 张明义, 等. 2022. 静压桩沉桩过程中贯入机理理论研究进展[J]. 工程地质学报, 30(2): 484-495. doi: 10.13544/j.cnki.jeg.2020-017
Liu Xueying, Wang Yonghong, Zhang Mingyi, et al. 2022. Advances in theoretical research on penetration characteristics of jacked piles[J]. Journal of Engineering Geology, 30(2): 484-495. doi: 10.13544/j.cnki.jeg.2020-017
Citation: Liu Xueying, Wang Yonghong, Zhang Mingyi, et al. 2022. Advances in theoretical research on penetration characteristics of jacked piles[J]. Journal of Engineering Geology, 30(2): 484-495. doi: 10.13544/j.cnki.jeg.2020-017

静压桩沉桩过程中贯入机理理论研究进展

doi: 10.13544/j.cnki.jeg.2020-017
基金项目: 

国家自然科学基金项目 51708316

国家自然科学基金项目 51778312

山东省重点研发计划项目 2017GSF16107

山东省自然科学基金青年基金项目 ZR2016EEQ08

山东省高等学校科技计划项目 J16LG02

青岛市应用基础研究计划项目 16-5-1-39-jch

详细信息
    作者简介:

    刘雪颖(1995-),女,硕士生,主要从事桩基础领域的研究工作. E-mail: liuxueying@hnu.edu.cn

    通讯作者:

    王永洪(1984-),男,博士,讲师,主要从事地基基础及地下工程领域的研究工作. E-mail: hong7986@163.com

  • 中图分类号: TU473

ADVANCES IN THEORETICAL RESEARCH ON PENETRATION CHARAC-TERISTICS OF JACKED PILES

Funds: 

the National Natural Science Foundation of China 51708316

the National Natural Science Foundation of China 51778312

Key R&D Program Project of Shandong Province 2017GSF16107

Youth Fund Project of Natural Science Foundation of Shandong Province ZR2016EEQ08

Science and Technology Plan Project of Shandong Province Higher School J16LG02

Applied Basic Research Project of Qingdao 16-5-1-39-jch

  • 摘要: 在静压桩的理论研究中,分析静压桩沉桩过程中贯入特性所面临的首要难题是明确静压桩贯入机理。本文以分析静压桩沉桩过程中贯入机理为基础,对静压桩沉桩的3种理论分析方法——圆孔扩张理论、应变路径法和有限元分析分别进行了总结与分析,指出了目前研究静压桩贯入机理所存在的不足,并提出了对贯入机理研究的若干建议与认识。建议在传统的圆孔扩张理论基础上,结合应变路径法加以修正,基于土的非线性、桩与土的共同作用、空间特性等对静压桩的沉桩机理本质进行分析。对静压桩贯入机理理论研究的总结为估算静压桩的施工影响提供参考,从而为静压桩的设计和施工提供更多的借鉴,带来一定的经济效益。
  • 图  1  圆孔扩张示意图(Bishop et al., 1945)

    σrσθ分别为径向、切向总应力;Ru为扩张前土体单元距孔心的距离;r为扩张后土体单元距孔心的距离;Rp为球孔周塑性区半径;uv为土体单元径向位移

    Figure  1.  Schematic diagram of expansion of round hole(Bishop et al., 1945)

    图  2  沉桩阻力计算示意图(张明义等,2003b)

    a. 桩端半球形扩张;b. 桩侧摩阻力计算图式。图a中,Pu为内压力;σrσθ分别为径向、切向总应力;Ru为球孔半径;Rp为弹塑性交界面半径;up为土体单元径向位移。图b中,Ln为桩身入土总深度;L1为浅层土体段;L2为入土中段;L3为法向应力最大段;f2L2段的单位侧摩阻力;F2F3分别为L2段和L3段的总侧摩阻力

    Figure  2.  Calculation diagram of pile-sinking resistance (Zhang et al., 2003b)

    图  3  沉桩阻力分布图(李林等,2016)

    采用r-z坐标系,D为桩径,h为入土深度,fs为单位桩侧摩阻力,τ为使桩端下部土体沿圆锥面发生剪切破坏所需力,σr为球孔极限扩张压力;R为沉桩阻力

    Figure  3.  Stress distribution of pile-sinking resistance (Li et al., 2016)

    图  4  沉桩示意图(周航等,2014)

    Figure  4.  Sketch of pile penetration(Zhou et al., 2014)

    图  5  垂直方向挤土位移(汪敏等,2015)

    a. 实际;b. 真实源作用;c. 虚拟汇作用;d. τ的修正

    Figure  5.  Vertical compacting displacement(Wang et al., 2015)

    图  6  水平方向挤土位移(汪敏等,2015)

    a. 实际;b. 真实源作用;c. 虚拟源作用;d. σ的修正

    Figure  6.  Horizontal compacting displacement(Wang et al., 2015)

    图  7  有限元模型图(罗战友等,2005)

    Figure  7.  Finite element model diagram(Luo et al., 2005)

    图  8  ALE法控制网格扭曲(毕庆涛等,2011)

    Figure  8.  ALE method for sloving mesh distortion (Bi et al., 2011)

    图  9  土体位移(鹿群等,2008)

    a. 水平;b. 竖直

    Figure  9.  Displacements of soil(Lu et al., 2008)

    图  10  水平挤压应力(鹿群等,2008)

    Figure  10.  Radial compacting stress(Lu et al., 2008)

    图  11  模型单元划分与圆滑处理示意图(寇海磊等,2012)

    a. 原始桩体模型及网格;b. 圆滑处理后的桩体模型及网格

    Figure  11.  Diagram of model element dividing and smoothing (Kou et al., 2012)

    表  1  有限元软件的对比

    Table  1.   Comparison of finite element software

    有限元
    软件
    ANSYS ABAQUS
    特点 偏于学术化;br多物理场(结构、热、电磁、流体等)的耦合计算 偏于工程化;结构和热力学方面的非线性计算
    适用范围 处理线性问题 用于处理复杂的非线性问题
    优点 对节点和单元可以几何操作;使用面元和体元及布尔运算建立模型,自适应网格划分; 加载后可以对网格进行细化,便于几何模型的改进 单元种类、材料模型和连接类型更多;囊括多种断裂失效准则,对断裂力学和裂纹扩展分析更为出色
    缺点 CPU处理时间较长;对小型简单的模型,建模繁琐;在某些条件下无法生成有限元网格 前处理较为繁琐;用户界面友好性一般
    下载: 导出CSV

    表  2  理论方法对比

    Table  2.   Comparison of theoretical methods

    理论方法 圆孔扩张理论 应变路径法 有限单元法
    优点 1. 应用最为广泛的理论方法;
    2. 其对于沉桩过程中土体的侧向挤压扩张研究有着较高的适用性;
    3. 方法较为简便
    1. 对沉桩过程中土体的挤压效应与贯入深度的关系加以考虑;
    2. 考虑了匀速贯入的连续性,可以给出贯入过程中桩周土体应力、位移的整体分布情况
    1. 在工程计算中应用性较好,可以全面地获得桩周土体的应力与位移等;
    2. 在大变形理论基础上建立的模型,与理论更为契合
    缺点 未考虑沿深度方向的影响 本质为近似算法,计算繁琐 模型参数可变范围较大,难以确定取值
    下载: 导出CSV
  • Baligh M M. 1985. Strain path method[J]. Journal of Geotechnical Engineering,111(9):1108-1136. doi: 10.1061/(ASCE)0733-9410(1985)111:9(1108)
    Benz T. 2007. Small-strain stiffness of soils and its numerical consequences[D]. Germany: Institute of Geotechnical Engineering, University of Stuttgart.
    Bi Q T, Xiao Z R, Ding S Y, et al. 2011. Numerical modelling of penetrating of jacked piles[J]. Chinese Journal of Geotechnical Engineering, 33 (S2): 74-77.
    Bishop R F, Hill R, Mott N F. 1945. Theory of indentation and hardness tests[C]//Proceedings of the Physical Society, 57(1): 147-159.
    Cao L F, Teh C I, Chang M F. 2001. Undrained cavity expansion in modified Cam clay I: Theoretical analysis[J]. Géotechnique, 51(4): 323-334. doi: 10.1680/geot.2001.51.4.323
    Cao M. 2015. Finite element analysis of displacement interaction coefficient between Two piles in a homogeneous foundation[J]. Chinese Earthquake Engineeringv Journal, 37 (S1): 52-56.
    Cao Z H, Kong G Q, Liu H L, et al. 2014. Model tests on 3-D soil deformation during pile penetration using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 36(2): 395-400.
    Carter J P, Randolph M F, Wroth C P. 1979. Stress and pore pressure changes in clay during and after the expansion of cylindrical cavity[J]. International Journal for Numerical and Analytical Methods in Geomechanic, 3: 305-322. doi: 10.1002/nag.1610030402
    Carter J P, Booker J R, Yeung S K. 1986. Cavity expansion in cohesive frictional soils[J]. Géotechnique, 36(3): 349-358. doi: 10.1680/geot.1986.36.3.349
    Chopra M B, Dargush G F. 1992. Finite-element analysis of time-dependent large-deformation problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 16(2): 101-130. doi: 10.1002/nag.1610160203
    Fan X Y. 2007. Study of sinking-resistance and compaction effect of static-press pile[D]. Shanghai: Tongji University.
    Fattah M Y, Al-Soudani W H S. 2016. Bearing capacity of open-ended pipe piles with restricted soil plug[J]. Ships and Offshore Structures, 11(5): 501-516. doi: 10.1080/17445302.2015.1030247
    Gao Y, Ma Y X, Zhang W Y, et al. 2019. Analysis of humidifying deformation characteristics and microstructure of loess in Xining Area[J]. Journal of Engineering Geology, 27(4): 803-810.
    He Y H. 2005. The study of compacting effect by static piling driving and the analysis of measured data[D]. Hangzhou: Zhejiang University.
    Hu W, Liu M Z. 2006. Elastic-plastic solution of expansion of sphere cavity in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 28(10): 1292-1297.
    Huang S G, Feng Y T, Xu X L, et al. 2015. Analysis of squeezing effect of open-ended pipe pile with considering plugging effect[J]. Journal of Shenyang University of Technology, 37(5): 582-587.
    Kiousis P D, Voyiadjis G Z, Tumay M T. 1988. A large strain theory and its application in the analysis of the cone penetration mechanism[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 12(1): 45-60. doi: 10.1002/nag.1610120104
    Kou H L, Zhang M Y, Zhang J K. 2012. Numerical simulation of the successive penetration of jacked pilein layered cohesive soil and sand[J]. Engineering Mechanics, 29(12): 175-181.
    Ji H, Lu W X. 2009. FEM numerical simulation of hole expansion caused by driving static pressure pile[J]. Journal of Xi'an University of Science and Technology, 29(6): 722-725.
    Li G S, Pan Y J, Meng X H. 2019. Comparative experimental analysis of physical and mechanical properties of saturated soft soil under different sampling methods[J]. Journal of Engineering Geology, 27(3): 550-558.
    Li J P, Tang J H, Zhang Y G, et al. 2014. Elasto-plastic solution of sphere cavity expansion in saturated clay[J]. Journal of Harbin Institute of Technology, 46(12): 71-77.
    Li J P, Cao X B, Li L, et al. 2018a. Centrifugal model test and mechanism study of jacked pile and CPTU penetration[J]. Rock and Soil Mechanics, 39(12): 4305-4312.
    Li J P, Cui J F, Li L, et al. 2018b. Influence of driving pile on diaphragm wall deformation of adjacent foundation pit[J]. Journal of Shanghai Jiaotong University, 52(12): 1580-1586.
    Li L, Li J P, Sun D A, et al. 2016. Pile jacking-in effects considering stress anisotropy of natural clay[J]. Chinese Journal of Rock Mechanics and Engineering, 35(5): 1055-1064.
    Li L, Li J P, Sun D A, et al. 2017. Time-dependence of bearing capacity of jacked piles in natural saturated clay[J]. Rock and Soil Mechanics, 38(9): 2515-2522.
    Li L, Li J P, Sun D A, et al. 2017. Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method[J]. Ocean Engineering, 143: 177-185. doi: 10.1016/j.oceaneng.2017.08.010
    Li Y J. 2001. A study on spheric cavity expansion and static piling in soils[D]. Hangzhou: Zhejiang University.
    Li Y N, Li J P, Zhao Z F, et al. 2010. Model test research on penetration process of jacked pile in layered soil[J]. Journal of Jilin University(Earth Science Edition), 40(6): 1409-1414.
    Liu J W, Zhang M Y, Zhao H F, et al. 2009. Computational simulation of jacking force based on spherical cavity expansion theory and friction fatigue effect[J]. Rock and Soil Mechanics, 30(4): 1181-1185.
    Liu Q B, Xiang W, Lehane B M, et al. 2011. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles[J]. Chinese Journal of Rock Mechanics and Engineering, 30(2): 400-410.
    Liu Y H, Chen Z Z, Peng Z J, et al. 2007. Analysis of pile driving effect of precast bubular pile using cylindrical cavity expansion theory[J]. Rock and Soil Mechanics, 28(10): 2167-2172.
    Lu Q, Gong X N, Cui W W, et al. 2008. Squeezing effects of jacked pile in layered soil[J]. Rock and Soil Mechanics, 29(11): 3017-3020.
    Luo Z Y. 2004. Study on compacting effects and construcrion measures of jacked pile[D]. Hangzhou: Zhejiang University.
    Luo Z Y, Gong X N, Wang J L, et al. 2005. Numerical simulationand factor analysis of jacked pile compacting effects[J]. Journal of Zhejiang University(Engineering Science), 39(7): 992-996.
    Luo Z Y, Xia J Z, Gong X N, et al. 2014. Study on compacting soil displacements around jacked single pile based on excess pore pressure dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (S1): 2765-2772.
    Mabsout M E, Sadek S A. 2003. Study of the effect of driving on pre-bored piles[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 27(2): 133-146. doi: 10.1002/nag.267
    Manandhar S, Yasufuku N. 2011. End bearing capacity of tapered piles in sands using cavity expansion theory[J]. Memoirs of the Faculty of Engineering, Kyushu University, 71(4): 77-99.
    Manandhar S, Yasufuku N. 2013. Vertical bearing capacity of tapered piles in sands using cavity expansion theory[J]. Soils and Foundations, 53(6): 853-867. doi: 10.1016/j.sandf.2013.10.005
    Mao H Y, Zhu J H, Yu X, et al. 2019. Dynamic compaction study of eliminating the collapsibility of eolian deposit fine sand[J]. Journal of Engineering Geology, 27(4): 745-752.
    Mei G X, Song L H, Zai J M, et al. 2008. Mechanism discussion and finite element analysis of soil-compacting by silent piling[J]. Chinese Journal of Computational Mechanics, 25(5): 660-664.
    Murthy D S, Robinson R G, Rajagopal K. 2018. Formation of soil plug in open-ended pipe piles in sandy soils[J]. International Journal of Geotechnical Engineering, 1-11.
    Potts D M, Mair R J. 2001. Finite element analysis in geotechnical engineering: application[M]. London: Thomas Telford.
    Qi K J, Zhang Y J, Wang X D, et al. 2005. Numerical simulation of static piling consindering large deformation[J]. Rock and Soil Mechanics, 26 (S1): 129-132.
    Randolph M F, Carter J P, Wroth C P. 1979. Driven piles in clay-the effects of installation and subsequent consolidation[J]. Géotechnique, 29(4): 361-393. doi: 10.1680/geot.1979.29.4.361
    Ruan Y F, Wang X D, Li Z W, et al. 2017. Theoretical analysis of spherical cavity expansion of axial loading capacity for toothed piles with sand liner[J]. Rock and Soil Mechanics, 38(9): 2567-2573.
    Sun D A, Matsuoka H, Yao Y P. 2004. An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis[J]. Computers and Geotechnics, 31(1): 37-46. doi: 10.1016/j.compgeo.2003.11.003
    Sagaseta C. 1987. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 37(3): 301-320. doi: 10.1680/geot.1987.37.3.301
    Sang S K, Zhang M Y, Bai X Y, et al. 2018. Model test and numerical simulation of intrusion mechanism of jacked pile in saturated coarse soil[J]. Journal of Guangxi University(Natural Science Edition), 43(4): 1499-1508.
    Tang B, Yin J F, Fei J W. 2018. Pile-soil interface model and analytical solution based on structural clay of Zhanjiang group[J]. Journal of Engineering Geology, 26(5): 1311-1317.
    Vesic A S. 1972. Expansion of cavity in infinite soil mass[J]. Journal of the Soil Mechanic and Foundation Division, 98(3): 265-289. doi: 10.1061/JSFEAQ.0001740
    Wang H, Wei D D. 2002. Numerical simulation research of the effect of squeezing soil due to pile driven in soft clay restrained on surface[J]. Rock and Soil Mechanics, 23(1): 107-110.
    Wang J Y, Xiao C Z, He C X. 2018. Numerical Analysis of effect of jacked pile on performance of buried pipes[J]. Journal of Southwest Jiaotong University, 53(2): 322-329.
    Wang M, Chu Z J, Shi S Q, et al. 2015. Compacting displacement of press-in pipe pile based on strain path method[J]. Journal of Logistics Engineering University, 31(4): 23-30.
    Wang R C, Shi J Y, Chen S, et al. 2015. Laboratory test study on compacting stress effect of jacked pile[J]. Journal of Central South University(Science and Technology), 46(11): 4292-4299.
    Wang Y H, Zhang M Y, Liu J W, et al. 2019. Field tests on excess pore pressure and soil pressure of pile-soil interface for a single pile during pile-sinking in clay[J]. Chinese Journal of Geotechnical Engineering, 41(5): 950-958.
    Wang Y H, Zhang M Y, Zhang C W, et al. 2018. Testing study of two methods for installing fiber bragg grating sensing in PHC pipe piles[J]. Journal of Engineering Geology, 26(2): 445-450.
    White D J, Bolton M D. 2002. Observing friction fatigue on a jacked pile[J]. Centrifuge and Constitutive Modelling: Two Extremes: 347-354.
    Xiao Z R, Hao Y C, Jiang M M, et al. 2019. Study on compaction effect of jacked pile in sand[J]. Journal of Henan Polytechnic University(Natural Science), 38(6): 126-133.
    Yang Q G, Liu J, He J, et al. 2013. Comparative research on penetration resistance of jacked tapered piles and uniform section piles[J]. Chinese Journal of Geotechnical Engineering, 35(5): 897-901.
    Yu H S, Houlsby G T. 1991. Finite cavity expansion in dilatants soil: loading analysis[J]. Géotechnique, 41(2): 173-183. doi: 10.1680/geot.1991.41.2.173
    Zhang K N, He J, Liu J, et al. 2012. Model experimental research on piling effects of static piling in soft clay ground with tapered pile[J]. Journal of Central South University(Science and Technology), 43(2): 638-643.
    Zhang M Y, Deng A F, Gan T J. 2003a. Displacement penetration method used for numerical simulation of jacked pile[J]. Rock and Soil Mechanics, 24(1): 113-117.
    Zhang M Y, Deng A F. 2003b. A spherical cavity expansion-sliding frication calculation model on penetration of pressed-in piles[J]. Rock and Soil Mechanics, 24(5): 701-704.
    Zhang M Y, Shi W, Zhang W, et al. 2017. Foundation Engineering[M]. Beijing: Science Press.
    Zhang Y G, Li J P. 2018. Analysis of ground displacement caused by pile installation considering boundary effects[J]. Journal of Tongji University(Natural Science), 46(9): 1195-1200.
    Zhao M Y, Xie Q, Guo Y C, et al. 2018. Experimental study of unsaturated permeability of Chengdu clay by instantaneous profile method[J]. Journal of Engineering Geology, 26(3): 620-625.
    Zheng J J, Nie Z J, Lu Y E. 2006. Analytical solution of cylindrical cavity expansion problems considering plugging effects[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (S2): 4004-4008.
    Zhou H, Kong G Q, Liu H L. 2014. Study on pile sinking compaction effect of hydrostatic wedge pile using cavity expansion theory[J]. China Journal of Highway and Transport, 27(4): 24-30.
    Zhou H, Liu H L, Yuan J R. 2018. A novel analytical approach for predicting the noncylindrical pile penetration-induced soil displacement in undrained soil by combining use of cavity expansion and strain path methods[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 42(11): 1270-1305.
    Zhou X P, Mei G X. 2014. Finite element simulation of permeable pipe pile driving considering consolidation process[J]. Rock and Soil Mechanics, 35 (S2): 676-682.
    毕庆涛, 肖昭然, 丁树云, 等. 2011. 静压桩压入过程的数值模拟[J]. 岩土工程学报, 33(增2): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2014.htm
    曹明. 2015. 均质地基中桩-桩位移相互作用系数的有限元分析[J]. 地震工程学报, 37(增1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2015S1011.htm
    曹兆虎, 孔纲强, 刘汉龙, 等. 2014. 基于透明土材料的沉桩过程土体三维变形模型试验研究[J]. 岩土工程学报, 36(2): 395-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402022.htm
    樊向阳. 2007. 静压桩施工沉桩阻力及沉桩挤土效应研究[D]. 上海: 同济大学.
    高英, 马艳霞, 张吾渝, 等. 2019. 西宁地区黄土增湿变形特性及微观结构分析[J]. 工程地质学报, 27(4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416
    何耀辉. 2005. 静压桩沉桩挤土效应研究及实测分析[D]. 杭州: 浙江大学.
    胡伟, 刘明振. 2006. 非饱和土中球形孔扩张的弹塑性分析[J]. 岩土工程学报, 28(10): 1292-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200610021.htm
    黄生根, 冯英涛, 徐学连, 等. 2015. 考虑土塞效应时开口管桩的挤土效应分析[J]. 沈阳工业大学学报, 37(5): 582-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201505019.htm
    计宏, 卢文晓. 2009. 静压桩挤土扩孔的有限元数值模拟研究[J]. 西安科技大学学报, 29(6): 722-725. doi: 10.3969/j.issn.1672-9315.2009.06.015
    寇海磊, 张明义, 张吉坤. 2012. 层状黏性土及砂土地基中静力压桩连续贯入的数值模拟[J]. 工程力学, 29(12): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201212027.htm
    李高山, 潘永坚, 孟叙华. 2019. 不同取样方法下饱和软土物理力学性状对比试验分析[J]. 工程地质学报, 27(3): 550-558. doi: 10.13544/j.cnki.jeg.2018-103
    李镜培, 唐剑华, 张亚国, 等. 2014. 饱和黏土中球孔扩张问题弹塑性解析[J]. 哈尔滨工业大学学报, 46(12): 71-77. doi: 10.11918/j.issn.0367-6234.2014.12.012
    李镜培, 操小兵, 李林, 等. 2018a. 静压沉桩与CPTU贯入离心模型试验及机制研究[J]. 岩土力学, 39(12): 4305-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812003.htm
    李镜培, 崔纪飞, 李林, 等. 2018b. 静压沉桩对邻近地下连续墙变形的影响[J]. 上海交通大学学报, 52(12): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201812007.htm
    李林, 李镜培, 孙德安, 等. 2016. 考虑天然黏土应力各向异性的静压沉桩效应研究[J]. 岩石力学与工程学报, 35(5): 1055-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605108.htm
    李林, 李镜培, 孙德安, 等. 2017. 天然饱和黏土地基静压桩承载力时效性研究[J]. 岩土力学, 38(9): 2515-2522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709008.htm
    李雨浓, 李镜培, 赵仲芳, 等. 2010. 层状地基静压桩贯入过程机理试验[J]. 吉林大学学报(地球科学版), 40(6): 1409-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201006028.htm
    李月健. 2001. 土体内球形空穴扩张及挤土桩沉桩机理研究[D]. 杭州: 浙江大学.
    刘俊伟, 张明义, 赵洪福, 等. 2009. 基于球孔扩张理论和侧阻力退化效应的压桩力计算模拟[J]. 岩土力学, 30(4): 1181-1185. doi: 10.3969/j.issn.1000-7598.2009.04.056
    刘清秉, 项伟, Lehane B M, 等. 2011. 颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J]. 岩石力学与工程学报, 30(2): 400-410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102026.htm
    刘裕华, 陈征宙, 彭志军, 等. 2007. 应用圆孔柱扩张理论对预制管桩的挤土效应分析[J]. 岩土力学, 28(10): 2167-2172. doi: 10.3969/j.issn.1000-7598.2007.10.031
    鹿群, 龚晓南, 崔武文, 等. 2008. 饱和成层地基中静压单桩挤土效应的有限元模拟[J]. 岩土力学, 29(11): 3017-3020. doi: 10.3969/j.issn.1000-7598.2008.11.022
    罗战友. 2004. 静压桩挤土效应及施工措施研究[D]. 杭州: 浙江大学.
    罗战友, 龚晓南, 王建良, 等. 2005. 静压桩挤土效应数值模拟及影响因素分析[J]. 浙江大学学报(工学版), 39(7): 992-996. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200507015.htm
    罗战友, 夏建中, 龚晓南, 等. 2014. 考虑孔压消散的静压单桩挤土位移场研究[J]. 岩石力学与工程学报, 33(增1): 2765-2772. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1025.htm
    毛洪运, 朱江鸿, 喻小, 等. 2019. 强夯法消除风积粉细砂湿陷性研究[J]. 工程地质学报, 27(4): 745-752. doi: 10.13544/j.cnki.jeg.2018-113
    梅国雄, 宋林辉, 宰金珉, 等. 2008. 静压沉桩挤土机理探讨及有限元分析[J]. 计算力学学报, 25(5): 660-664. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200805013.htm
    戚科骏, 张云军, 王旭东, 等. 2005. 考虑大变形的静力压桩数值模拟[J]. 岩土力学, 26(增1): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S1030.htm
    阮永芬, 王熙冬, 李志伟, 等. 2017. 砂衬齿形桩竖向承载力的小孔扩展理论研究[J]. 岩土力学, 38(9): 2567-2573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709014.htm
    桑松魁, 张明义, 白晓宇, 等. 2018. 黏土地基静压桩贯入机制模型试验与数值仿真[J]. 广西大学学报(自然科学版), 43(4): 1499-1508. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201804024.htm
    汤斌, 殷建风, 费建武. 2018. 基于湛江组结构性黏土的桩土接触面模型及解析解[J]. 工程地质学报, 26(5): 1311-1317. doi: 10.13544/j.cnki.jeg.2018168
    王浩, 魏道垛. 2002. 表面约束下的沉桩挤土效应数值模拟研究[J]. 岩土力学, 23(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200201023.htm
    王嘉勇, 肖成志, 何晨曦. 2018. 静压桩对邻近埋地管道性能影响的数值分析[J]. 西南交通大学学报, 53(2): 322-329. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201802014.htm
    汪敏, 储召军, 石少卿, 等. 2015. 基于应变路径法的压入管桩单桩挤土位移[J]. 后勤工程学院学报, 31(4): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC201504005.htm
    王瑞彩, 施建勇, 陈胜, 等. 2015. 考虑静压桩挤土应力影响的室内试验研究[J]. 中南大学学报(自然科学版), 46(11): 4292-4299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511042.htm
    王永洪, 张明义, 刘俊伟, 等. 2019. 黏性土中单桩贯入桩-土界面超孔压和土压测试现场试验[J]. 岩土工程学报, 41(5): 950-958. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905023.htm
    王永洪, 张明义, 张春巍, 等. 2018. 光纤光栅传感技术在PHC管桩中不同埋设工艺试验研究[J]. 工程地质学报, 26(2): 445-450. doi: 10.13544/j.cnki.jeg.2017-439
    肖昭然, 郝友超, 蒋敏敏, 等. 2019. 砂土中静压桩挤土效应的研究[J]. 河南理工大学学报(自然科学版), 38(6): 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201906019.htm
    杨庆光, 刘杰, 何杰, 等. 2013. 楔形与等截面静压桩沉桩贯入阻力对比研究[J]. 岩土工程学报, 35(5): 897-901. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305015.htm
    张可能, 何杰, 刘杰, 等. 2012. 静压楔形桩沉桩效应模型试验研究[J]. 中南大学学报(自然科学版), 43(2): 638-643. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201202039.htm
    张明义, 邓安福, 干腾君. 2003a. 静力压桩数值模拟的位移贯入法[J]. 岩土力学, 24(1): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200301027.htm
    张明义, 邓安福. 2003b. 静压桩贯入地基的球孔扩张-滑动摩擦计算模式[J]. 岩土力学, 24(5): 701-704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200305006.htm
    张明义, 时伟, 章伟, 等. 2017. 地基基础工程[M]. 北京: 科学出版社.
    张亚国, 李镜培. 2018. 考虑地表边界效应的静压沉桩挤土位移解析[J]. 同济大学学报(自然科学版), 46(9): 1195-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809006.htm
    赵梦怡, 谢强, 郭永春, 等. 2018. 非饱和成都黏土瞬时剖面法渗透性试验研究[J]. 工程地质学报, 26(3): 620-625. doi: 10.13544/j.cnki.jeg.2017-177
    郑俊杰, 聂重军, 鲁燕儿. 2006. 基于土塞效应的柱形孔扩张问题解析解[J]. 岩石力学与工程学报, 25(增2): 4004-4008. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2104.htm
    周航, 孔纲强, 刘汉龙. 2014. 基于圆孔扩张理论的静压楔形桩沉桩挤土效应研究[J]. 中国公路学报, 27(4): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201404005.htm
    周小鹏, 梅国雄. 2014. 考虑固结的透水管桩沉桩全过程有限元模拟[J]. 岩土力学, 35(增2): 676-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2095.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  29
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-07
  • 修回日期:  2020-05-28
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回