A NOVEL METHOD FOR NATURAL GAS HYDRATE PRODUCTION: DE-PRESSURIZATION AND BACKFILLING WITH IN-SITU SUPPLE-MENTAL HEAT
-
摘要: 天然气水合物资源量丰富,被公认为最有潜力的新型高效清洁替代能源,是未来能源革命的战略突破口。由于天然气水合物分解是伴随相变的复杂物理化学过程,安全经济地开采天然气水合物仍有许多瓶颈难题亟待解决。当前降压法是相对经济有效的开采方法,但天然气平均日产量远远达不到产业化开发的需求。在分析降压法规模化开采面临的瓶颈问题的基础上,提出了一种全新的天然气水合物开采方法——原位补热降压充填开采法,重点剖析了该方法的3个基本原理,提出了该方法的开采技术方案、关键技术与工艺步骤。得出了如下结论:(1)天然气水合物降压法规模化开发需要突破“天然气水合物分解热补给”(补热)、“储层结构稳定性”(保稳)和“提高储层渗透率”(增渗)等3个方面的瓶颈难题;(2)基于“降压分解原理”、“原位补热原理”和“充填增渗原理”,提出了天然气水合物原位补热降压充填开采法,该方法将氧化钙(CaO)粉末注入天然气水合物储层,反应产生的大量热量补充天然气水合物的分解热,同时,反应生成的氢氧化钙(Ca(OH)2)既填充了天然气水合物分解后留下的空隙,多孔结构又提高了储层的渗透性;(3)提出了天然气水合物原位补热降压充填开采所涉及的具体技术方案、关键技术与工艺步骤。当前天然气水合物开采技术手段距离产业化开发的需求还有一定距离,未来需要加强国际科研合作,深度学科交叉,研发变革性技术,早日实现天然气水合物规模化开发。Abstract: Natural gas hydrate(NGH) is the most promising clean alternative energy resource for world, which will be the strategic breakthrough of energy revolution in the future. Because the decomposition of NGH is a complicated physical and chemical process accompanied by phase change, there are still many bottleneck problems to be resolved with respect to the safe and economic exploitation of NGH. At present, the depressurization method is relatively economic and effective, but the average daily production of natural gas is far from the demand of commercial development. Based on the analysis of the bottleneck problems in depressurization method, a novel method for natural gas hydrate production, depressurization and backfilling with in-situ supplemental heat, is proposed. Three basic principles of the method are emphatically analyzed. The technology scheme, key techniques and implementation steps of the method are introduced. The conclusions are as follows: (1)The achievement of large-scale production of NGH by depressurization depend on three key factors, namely heat supply, reservoir stability and reservoir permeability. (2)Based on the three principles of depressurization, in-situ supplemental heat and backfilling and increased permeability, the novel method was proposed. In this method, calcium oxide(CaO)powder is injected into the hydrate reservoir, which will provide a large amount of heat for the decomposition of NGH. At the same time, the Ca(OH)2 produced by the reaction will backfill the void volume left by hydrate decomposition and improve the permeability of the reservoir. (3)This study put forward the technology scheme, key techniques and implementation steps of the novel method. The method is mainly implemented in three stages, i.e., horizontal well drilling and completion, high-pressure air powder injection and depressurization and backfilling. In the future, it is necessary to strengthen international scientific research cooperation, deepen interdisciplinary R&D of innovative technologies, and realize the large-scale production of NGH as soon as possible.
-
图 1 天然气水合物资源分布金字塔图(Boswell,2009)
Figure 1. The gas hydrate resource pyramid(Boswell, 2009)
图 2 天然气水合物赋存类型(Collett,2004)
Figure 2. Cores of natural gas hydrates(Collett, 2004)
图 4 氧化钙水化形成的凝聚结构与空隙体积增量效应(林宗寿,2014)
Figure 4. Aggregation structure and void volume increment effect of calcium oxide hydration
表 1 不同天然气水合物开采方法试采汇总表(改自Koh et al., 2016)
Table 1. NGH field production summary(modified from Koh et al., 2016)
技术
类型分解法 置换法 热激法 降压法 原理
简图技术
说明—向水合物储层注入热水或热蒸汽
—水合物在热激发下分解—通过抽水降低井筒附近储层压力
—水合物分解产生额外的水—向储层注入CO2或CO2+N2启动气体置换—天然气水合物不发生分解 技术
利弊—分解快速,环境影响少
—热效率低,成本高—压力传播块,开采简单
—成本低—天然气水合物储层不会发生除气体置换以外的变动
—储层稳定性得到保障存在
问题—由水合物分解引发的储层稳定性问题
—由出砂导致的低采收率—水合物分解热引起地层降温,产生二次水合物,降低渗透率
—井筒易出砂堵塞失效—气体扩散程度不高
—注气输送问题现场
试采
(产气
速率)2002加拿大Mallik(470 m3/5 d) 2007加拿大Mallik(830 m3/0.5 d)
2008加拿大Mallik(13000 m3/6 d)
2013日本南海(120000m3/6d)
2017日本南海(235000m3/36d)
2017中国神狐(309000m3/60d)
2020中国神狐(861400m3/30d)2012美国Alaska Ignik Sikumi(24000m3/30d) 储层
温度
/压力280K/8-9MPa(2002 Mallik) 275-276K/7-11MPa(2007 Mallik)
275-276 K/7-11MPa(2008 Mallik)
282 K/11-12MPa(2013日本南海)
286 K/14-16MPa(2017中国神狐)288 K/7MPa(2012 Alaska) 试采
亮点—实施了5d的热水循环
—世界上首次有针对性地开采天然气水合物2007 Mallik:首次通过降压法开采水合物;没有采取防砂措施;
2008 Mallik:采取防砂措施并显著提高了开采的可持续性;
2013日本南海:首次海域水合物试采;
2017日本南海:解决了砂堵问题;
2017中国神狐:产气时间最长;
2020中国神狐:产气总量、日均产气量最高前13d向储层注入气体(CO2+N2),关井3d后开始采气,采气阶段持续30d 表 2 不同地区天然气水合物1m3储层完全分解热量及所需氧化钙质量
Table 2. The heat needed for decomposition of the hydrate in 1m3 reservoir volume and the corresponding demand of CaO in different hydrate system
代号 开采
时间地点 岩性 平均
孔隙度
/%平均
饱和度
/%天然气
水合物质量
/kg天然气
水合物分解热
/MJ产生
天然气体积
/m3所需
氧化钙质量
/kgMessoyakha-RU 2005 俄罗斯麦索亚哈 冻土层 21 20 38.22 17.46 7.17 15.09 Mallik-A-CA 2002 加拿大麦肯齐 A层段砂岩 35 80 254.80 116.42 47.80 100.60 Mallik-B-CA 2007 加拿大麦肯齐 B层段砂岩、粉砂岩互层 35 60 191.10 87.32 35.85 75.45 Mallik-C-CA 2008 加拿大麦肯齐 C层段砂质粉砂岩 35 85 270.73 123.70 50.79 106.89 Alaska-US 2012 美国阿拉斯加 砂质沉积物 40 75 273.00 124.74 51.21 107.79 Nankai-JP 2013 日本南海海槽 砂质水合物 39 68 241.33 110.27 45.27 95.28 Shenghu-CN 2017 中国南海神狐海域 泥质粉砂 33 76 228.23 104.28 42.81 90.11 Liwan-CN 2017 中国南海荔湾 泥岩、粉砂岩 43 40 156.52 71.52 29.36 61.80 表 3 等反应热条件下sⅠ型甲烷水合物分解与氧化钙水化前后相态体积变化
Table 3. The respective volume change of hydrae and CaO before and after reaction confining the reaction heat to 54.49kJ
反应式 分子量 密度
/g·cm-3反应热
/kJ物质的量
/mol质量
/g系统反应前绝对体积/cm3 系统反应后绝对体积/cm3 固态充
填比例
/%固态 液态 气态 固态 液态 气态 CH4·5.75H2O(s)
=CH4(g)
+5.75H2O(l)119.655
=16.040
+103.6150.910
0.717/g·L-1
1.000+54.49 1 119.655
=16.04
+103.615131.489 0 0 0 103.615 22371 21.226 CaO(s)
+H2O(l)
=Ca(OH)2(s)56.08
+18.02
=74.103.34
1.00
2.23-54.49 0.84 47.11
+15.14
=62.2514.11 15.14 0 27.91 0 0 表 4 全固态充填条件下sⅠ型甲烷水合物分解与氧化钙水化物质的量比例
Table 4. The quantity of CaO needed for filling the space generated by the decomposition of 1 mol hydrate
反应式 分子量 密度
/g·cm-3反应热
/kJ物质的量
/mol质量
/g系统反应前绝对体积/cm3 系统反应后绝对体积/cm3 固态充
填比例
/%固态 液态 气态 固态 液态 气态 CH4·5.75H2O(s)
=CH4(g)
+5.75H2O(l)119.655
=16.040
+103.6150.910
0.717/g·L-1
1.000+54.49 1 119.655
=16.04
+103.615131.489 0 0 0 103.615 22371 100 CaO(s)
+H2O(l)
=Ca(OH)2(s)56.08
+18.02
=74.103.34
1.00
2.23-343.97 3.957 221.900
+71.321
=293.22166.43 71.321 0 131.489 0 0 -
Berge L I, Jacobsen K A, Solstad A. 1999. Measured acoustic wave velocities of R11(Ccl3F)hydrate samples with and without sand as a function of hydrate concentration[J]. Journal of Geophysical Research: Solid Earth, 104 (B7): 15415-15424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/1999JB900098 Boswell R. 2009. Is gas hydrate energy within reach[J]. Science, 325 : 957-958. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f40b98d8fdfb515c06625e30183e314 Bouriak S, Vanneste M, Saoutkine, 2000. A. Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway[J]. Mar Geol, 163 : 125-148. Bugge T, Befring S, Belderson R H, et al. 1987. A giant three-stage submarine slide off Norway[J]. Geo-Mar Lett, 7 : 191-198. doi: 10.1007-BF02242771/ Collette T S. 2004. Gas hydrates as a future energy resource[J]. Geotimes, 49(11): 24-27. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bcab91c846f909a8c655250d7a4eeca2 Constantin Cranganu. 2009. In-situ thermal stimulation of gas hydrates[J]. Journal of Petroleum Science and Engineering, 65: 76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85d45ee9fc246521cff7ab6626a7506d Dong-Yeun Koh, Hyery Kang, Jong-Won Lee, et al. 2016. Energy-efficient natural gas hydrate production using gas exchange[J]. Applied Energy, 162 : 114-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ca3bf292c208654a155b217f65dbfcd Farrell H, Boswell R, Howard J, et al. 2010. CO2-CH4 exchange in natural gas hydrate reservoirs: potential and changes[M]//Fire in the Ice, DOE NETL Methane Hydrate Newsletter: 19-21. Hannegan D, Todd R J, Pritchard D M, et al. 2004. MPD: uniquely applicable to methane hydrate drilling[R]. SPE 91560. Kim H C, Bishnoi P R, Heidemann R A, et al. 1987. Chemical Engineering Science, 42(7): 1645-1653. Koh C A, Sloan E D, Sum A K, et al. 2011. Fundamentals and Applications of Gas Hydrates [M]//Prausnitz J M. Annual Review of Chemical and Biomolecular Engineering, 2 : 237-257. Konno Y, Yoneda J, Egawa K, et al. 2015. Permeability of sediment cores from methane hydrate deposit in theEastern Nankai Trough[J]. Marine and Petroleum Geology, 66 : 487-495. http://www.sciencedirect.com/science/article/pii/S0264817215000525 Kvenvolden K A. 1999. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 96(7): 3420-3426. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_34283 Lu C, Xia Y, Sun X, et al. 2019. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea[J]. Energies, 12(19): 3688. https://www.researchgate.net/publication/336096268_Permeability_Evolution_at_Various_Pressure_Gradients_in_Natural_Gas_Hydrate_Reservoir_at_the_Shenhu_Area_in_the_South_China_Sea Makogon Y F. 1997. Hydrates of Hydrocarbons. PennWell Books[J]. Tulsa, 482. http://www.researchgate.net/publication/255223021_hydrates_of_hydrocarbons Maury V, Guenot A. 1995. Practical advantage of mud cooling systems for drilling[R]. SPE 25732. Melver R D, Richard D. 1982. Role of naturally occurring gas hydrates in sediment transport[J]. American Association of Petroleum Geologists Bulletin, (66): 789-792. http://www.researchgate.net/publication/255130015_Role_of_naturally_occurring_gas_hydrates_in_sediment_transport Moridis G J, Collett T S, Poolandidarvish M, et al. 2011. Challenges, uncertainties and issues facing gas production from gas hydrate deposits[J]. SPE Reservoir Evaluationg & Engineering, 14(1): 76-112. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223144391/ Nimblett J, Ruppel C. 2003. Permeability evolution during the formation of gas hydrates in marine sediments[J]. Journal of Geophysical Research Solid Earth, 108(B9). Paull C K, Buelow W J, Ussler III W, et al. 1996. Increased continental-margin slumping frequency during sea-level low stands above gas hydrate-bearing sediments[J]. Geology, (24): 143-146. http://www.researchgate.net/publication/253821635_Increased_continental-margin_slumping_frequency_during_sea-level_lowstands_above_gas_hydrate_bearing_sediments Rydzy M B, Schicks J M, Naumann R, et al. 2007. Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy[J]. J. Phys. Chem. B 111, 9539-9545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67e292ddddc5268082d68fbede54cde2 Sloan E D. 2003. Fundamental principles and applications of natural gas hydrates[J]. Nature, 426: 353-363. https://www.nature.com/articles/nature02135 Sun X, Nanchary N, Mohanty K K. 2005. 1-D modeling of hydrate depressurization in porous media. Trans[J]. Porous Media, 58(3): 315-338. doi: 10.1007/s11242-004-1410-x Taoutaou S, Ashraf S, Takahashi U. 2014. Implementation of a fit-for-purpose cementing technology for the first gas hydrate production in Japan[R]. IPTC-17997-MS. Todd R J, Pritchard D M, Harrall S. 2006. New technology needs for methane hydrates production[R]. OTC 18247. Uchida S. 2013. Numerical investigation of geomechanical behaviour of hydrate-bearing sediments[D]. Cambridge, UK: University of Cambridge. Yamamoto K, Terao Y, Fujii T, et al. 2014. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[J]. Offshore Technology Conference, doi: 10.4043/25243-MS. Yoneda J, Oshima M, Kida M, et al. 2019. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 108 : 524-536. https://www.sciencedirect.com/science/article/pii/S0264817218302848 Yun T S, Francisca F M, Santamarina J C, et al. 2005. Compressional and shear wave velocities in uncemented sediment containing gas hydrate[J]. Geophysical Research Letters, 32(10): L10609. doi: 10.1029/2005GL022607. 操秀英. 2020. 3.27试采创纪录我国率先实现水平井钻采深海"可燃冰"[N].科技日报, 2020-03-27(2). BP集团公司. 2019. BP世界能源统计年鉴[R]. BP集团公司, 68 : 1-61. 杜卫刚. 2018.浅谈泥质粉砂岩防砂技术[J].化工管理, 25(2): 141. http://d.old.wanfangdata.com.cn/Periodical/shihjs201802110 杜卫刚, 钱旭瑞, 谢梦春, 等. 2019.日本天然气水合物完井试采技术分析[J].油气井测试, 28(6): 49-53. http://www.cnki.com.cn/Article/CJFDTotal-YQJC201906009.htm 光新军, 王敏生. 2016.海洋天然气水合物试采关键技术[J].石油钻探技术, 44(5): 45-51. http://d.old.wanfangdata.com.cn/Periodical/syztjs201605008 李宽, 张永勤, 孙友宏, 等. 2013.天然气水合物钻井泥浆冷却系统研究及优化[J].钻采工艺, 36(4): 34-36. http://d.old.wanfangdata.com.cn/Periodical/zcgy201304010 李楠, 王晓辉, 吕一宁, 等. 2016.天然气水合物开发面临的挑战以及关键技术[J].石油科学通报, 1 : 171-174. http://www.cnki.com.cn/Article/CJFDTotal-SYKE201601013.htm 李守定, 孙一鸣, 陈卫昌, 等. 2019.天然气水合物开采方法及海域试采分析[J].工程地质学报, 27(1): 55-68. http://www.gcdz.org/cn/article/id/22946 李文龙, 高德利, 杨进. 2019.海域含天然气水合物地层钻完井面临的挑战及展望[J].石油钻采工艺, 41(6): 681-689. 林宗寿. 2014.胶凝材料学[M].武汉:武汉理工大学. 刘克强. 2019. "一趟钻"关键工具技术现状及发展展望[J].石油机械, 47(11): 13-18. http://d.old.wanfangdata.com.cn/Periodical/syjx201911003 刘利生, 沈东, 陈荣. 2016.高浓度高气压在烧结用石灰气力输送中的应用[J].现代冶金, 44(6): 24-26. http://d.old.wanfangdata.com.cn/Periodical/jsyj201606006 孙万通, 孟英峰, 魏纳, 等. 2016.海洋钻井过程中的井筒温度敏感性研究[J].天然气技术与经济, 10(4): 36-40. http://d.old.wanfangdata.com.cn/Periodical/trqjs201604013 张兰江, 张明杰, 梁玉斌, 等. 2016. Tesco旋转导向套管钻井技术[J].石油机械, 44(6): 41-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syjx201606009 张旭辉, 鲁晓兵, 李鹏. 2019.天然气水合物开采方法的研究综述[J].中国科学:物理学力学天文学, 49(3): 034604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201903003 自然资源部. 2018.中国矿产资源报告2018[R].北京: 自然资源部: 1-9. -