土石混合体工程地质力学特性及其结构效应研究

胡瑞林 李晓 王宇 高玮 夏加国 李志清 高文伟 孙永帅

胡瑞林, 李晓, 王宇, 等. 2020. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077
引用本文: 胡瑞林, 李晓, 王宇, 等. 2020. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077
Hu Ruilin, Li Xiao, Wang Yu, et al. 2020. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077
Citation: Hu Ruilin, Li Xiao, Wang Yu, et al. 2020. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077

土石混合体工程地质力学特性及其结构效应研究

doi: 10.13544/j.cnki.jeg.2020-077
基金项目: 

国家自然科学基金 41330643

详细信息
    作者简介:

    胡瑞林(1961-),男,博士,研究员,博士生导师,主要从事岩土体工程性质和地质灾害研究方面的工作. E-mail: hurl@mail.iggcas.ac.cn

  • 中图分类号: P642

RESEARCH ON ENGINEERING GEOMECHANICS AND STRUCTURAL EFFECT OF SOIL-ROCK MIXTURE

  • 摘要: 土石混合体是一种土-石混杂、分布广泛、性质特殊的地质体,也是众多山区滑坡的重要载体。复杂的土-石结构组成是此类介质物理力学特性复杂、难以把控的关键。本文通过多尺度宏-微观室内和现场物理力学试验与模拟,对土石混合体的强度特性、变形特性和渗透特性及其结构控制机理展开了深入研究,系统阐明了含石量、块石形状、基质组分、土-石级配等关键结构因子的制约规律,进一步揭示了土石混合体强度和变形特征随机性的土石结构控制规律,提出了不同结构状态下强度参数的正确获取方法;研究了不同含石量土石混合体的非线性渗透特性,获得了非线性渗流计算模型及其抗渗变形优化设计方法,为全面建立基于真实土石结构和非线性本构关系的新一代土石混合体滑坡预测预警体系提供一定的理论支撑。
  • 图  1  典型土石混合体构成(云南虎跳峡谷公路边坡)

    Figure  1.  Typical soil-rock mixture composition

    图  2  RSM1000型伺服控制土石混合体大型直剪仪

    a.正视图;b.后视图

    Figure  2.  Large geotechnical shear strength test system RSM-1000 controlled by motor servo

    图  3  块石含石量对剪切带厚度的影响

    a. L1(9.5~19.0 mm)块石尺寸;b. L2(19.0~31.5 mm)块石尺寸;c. L3(31.5~53.0 mm)块石尺寸

    Figure  3.  The effect of rock size on shear band thickness

    图  4  剪切后块石变形特征

    a.剪切面布置单排块石;b.剪切后单排块石发生翻转;c.剪切后单排块石俯视图;d.剪切面上下布置双排块石;e.剪切后块石未发生明显翻转;f.剪切后剪切面块石俯视图

    Figure  4.  The deformation characteristics of rocks after shear

    图  5  大型三轴剪切试验机

    a.大型三轴剪切试验机主视图;b.大型三轴剪切试验机示意图

    Figure  5.  Large-scale triaxial shear test machine

    图  6  不同围压下体应变随轴向应变关系曲线

    a. 25%含石量;b. 35%含石量

    Figure  6.  Curves of volumetric strain variation with axial strain under different confining pressures

    图  7  偏应力、孔压、体应变对应关系曲线

    Figure  7.  The one-in-one correspondence relationship curves of deviator stress, volumetric strain and pore water pressure

    图  8  湖南衡阳土石混合体野外推剪试验曲线

    Figure  8.  Shear stress-displacement curve of sample of PS-1

    图  9  10#坑的三维剪切破坏面

    a. 10#试样顶面破裂形态素描图;b.三维剪切破坏面Surfer图

    Figure  9.  Three-dimensional shear failure plane of No.10

    图  10  不同块石含量时土石混合体直剪试验曲线成果图

    Figure  10.  The direct shear test curve of S-RM with different rock content

    图  11  剪切带发育及内部块体运动示意图

    A、B为预剪面;箭头表示块体运动方向;虚线表示实际剪切带

    Figure  11.  Schematic diagram of shear zone development and internal block movement

    图  12  不同含石量下土石混合体剪切带发育状况

    Figure  12.  Development of shear zone of S-RM under different rock content

    图  13  超声波试验使用的换能器

    Figure  13.  Transducers for ultrasonic testing

    图  14  径向超声测试试验装置系统

    整个系统的组成为:1.上横梁;2.刚性立柱;3.托盘;4.导向杆;5.底坐;6.电导线;7.力传感器;8.荷载控制器;9.液压千斤顶;10.百分表;11.刚性垫块;12.试样;13.橡皮条;14.发射换能器;15.接收换能器;16.超声波仪

    Figure  14.  Radial ultrasonic testing equipment system

    图  15  土石混合体试样波速与密度的关系

    Figure  15.  Relationship between density and UPV for all specimens

    图  16  土石混合体试样波速与密度的关系

    Figure  16.  Relationship between density and AC for all specimens

    图  17  典型试样裂纹总宽度与相对应力的关系曲线

    Figure  17.  The relationship between crack width and stress level

    图  18  土石混合体试样应力-应变曲线实测与理论对比分析

    Figure  18.  Measurement and theoretical comparative analysis of stress-strain curve of S-RM

    图  19  CT原理图(a)及450 kV射线源工业CT样机(b)

    Figure  19.  CT schematic diagram and 450 kV X-ray industrial CT machine

    图  20  土石混合体试样中所用块石形态特征提取

    Figure  20.  Digital image feature extraction of rock blocks for S-RM

    图  21  CT扫描横截面图像图

    Figure  21.  CT scanning cross-sectional image

    图  22  应力-应变曲线

    Figure  22.  Axial stress-axial strain curve for RSA specimen

    图  23  块石包裹体及附近土体CT数变化

    Figure  23.  CT number variation for stone inclusion and its nearby soil in different slice

    图  24  土石混合体试样CT切片裂纹特征形态提取

    Figure  24.  Extraction of the crakcs from the original CT images for typical slice of 20, 40, 60, and 80, respectively

    图  25  土石混合体损伤变量与轴向应变的关系

    Figure  25.  Relationship between damage variable and axial strain

    图  26  土石混合体试样应力-应变实测与理论对比

    Figure  26.  Stress-strain measurement and theoretical comparison of soil-rock mixture specimens

    图  27  土石混合体细观计算力学流程

    Figure  27.  Flow chart of meso-mechanics for S-RM

    图  28  不同椭圆方位试样起裂、慢裂、快裂至破坏的过程(变形放大20倍)

    Figure  28.  Process of crack initiation, slow propagation, fast propagation and failure for samples in different elliptical azimuths(deformation amplified 20 times)

    图  29  不同块石方位的应力-应变曲线

    Figure  29.  Stress-strain curves for different block azimuths

    图  30  不同含石量土石混合体试样单轴压缩条件下的应力-时步曲线

    a.含石量为20%;b.含石量为30%;c.含石量为40%;d.含石量为50%

    Figure  30.  Stress-strain curves for RSA specimens with different rock percentages

    图  31  不同含石量土石混合体试样土石胶结强度计算结果

    a.含石量为20%;b.含石量为30%;c.含石量为40%;d.含石量为50%

    Figure  31.  Stress-strain curves for S-RM specimens with different interface cement strengths

    图  32  土石混合体试样单轴加载条件下渐进破坏过程

    a.加载1步;b.加载8步;c.加载16步;d.加载24步;e.试样破坏

    Figure  32.  The progressive failure process of RSA specimen under unxial compressive test

    图  33  加载过程中单元损伤情况与荷载步的关系曲线

    Figure  33.  Number of damage element during cracking

    图  34  黏聚力随含石量变化

    Figure  34.  Cohesion varies with rock block percentages

    图  35  内摩擦角随含石量变化

    Figure  35.  Internal friction angle varies with rock block percentages

    图  36  不同块石含量下土石混合体抗剪强度-法向应力关系

    Figure  36.  Relationship between shear strength and normal stress of S-RM under different rock block percentages

    图  37  土石混合体抗剪强度与块石含量关系

    a.内摩擦角增量与块石含量关系;b.黏聚力与块石含量关系

    Figure  37.  Relationship between shear strength and rock block percentages of S-RM

    图  38  自主研发的大尺度伺服控制土石混合体压力渗透仪

    Figure  38.  Structure scheme of the large-scale servo-controlled permeability testing system for permeability testing

    图  39  大尺度渗流试验所采用的块石形态

    Figure  39.  Rock blocks used in large-scale seepage test

    图  40  大尺度渗流试验遵循的试验步骤

    Figure  40.  Test procedure of large-scale seepage test

    图  41  黏土基质试样渗透流速与水力梯度的关系

    a.含石量30%;b.含石量40%;c.含石量50%;d.含石量60%

    Figure  41.  Relationship between seepage velocity and hydraulic gradient for SRM specimens with clay matrix with different rock block percentages

    图  42  黏土基质试样渗透系数与水力梯度的关系

    a.含石量30%;b.含石量40%;c.含石量50%;d.含石量60%

    Figure  42.  Relationship between permeability coefficient and hydraulic gradient for SRM specimens with clay matrix with different rock block percentages

    图  43  淤泥基质试样渗透速度与水力梯度的关系(a~d含石量分别为30% ~60%)

    Figure  43.  Relationship between seepage velocity and hydraulic gradient for SRM specimens with mucky soil matrix with different rock block percentages

    图  44  淤泥基质试样渗透系数随水力梯度的变化关系(a~d含石量分别为30% ~60%)

    Figure  44.  Relationship between permeability coefficient and hydraulic gradient for SRM specimens with mucky soil matrix with different rock block percentages

    图  45  采用Forchheimer方程拟合渗流速度与水力梯度的关系

    Figure  45.  Forchheimer equation fitting for typical SRM specimens with mucky soil matrix

    图  46  砂土基质典型试样的渗透速率与水力梯度的关系曲线

    Figure  46.  Relationship between seepage velocity and hydraulic gradient for SRM specimens with fine sand matrix

    图  47  所测试的砂土基质典型试样渗透速率的最大值、最小值和均值

    Figure  47.  The box chart figure for S-RM specimens with fine sand matrix

    图  48  基质为黏土时不同含石量渗透特性的比较

    a.渗透速率与水力梯度的关系;b.渗透系数与含石量的关系

    Figure  48.  Comparison of permeability characteristics of clay matrix with different rock block content

    图  49  基质为淤泥时不同含石量渗透特性的比较

    a.渗透速率与水力梯度的关系;b.渗透系数与含石量的关系

    Figure  49.  Comparison of permeability characteristics of muddy matrix with different rock block content

    表  1  450 kV通用型工业CT的系统性能指标

    Table  1.   Performance index for 450 kV universal industrial computed tomography

    项目 指标
    有效扫描口径 φ800 mm
    有效扫描高度 1000 mm
    射线穿透最大厚度 等效50 mm Fe
    工件最大重量 200 kg
    空间分辨率 4 Lp/mm(最佳)0.125 mm×0.125 mm×0.125 mm
    透视相对灵敏度 1%(10 mmFe后)
    密度分辨率 0.1%(3σ)
    扫描层厚 0.13 mm
    扫描时间/每层 最快1 min
    图像重建时间 30 sec
    气孔分辨能力 φ 0.3 mm
    夹杂物分辨能力 φ0.1 mm
    裂纹分辨能力 0.05 mm×15 mm
    工作台平移定位精度 ±0.02 mm
    工作台旋转定位精度 ±5角秒
    下载: 导出CSV

    表  2  由Forchheimer方程表征黏土基质试样的渗流规律

    Table  2.   Curve fitting results of seepage velocity against hydraulic gradient for typical specimens using Forchheimer equation

    含石量
    /%
    -J=-aV+bV2(Equation(8)) K(×10-8m·s-1) R2
    a b
    30 4.205 0.590 3.513 0.998
    40 4.824 0.274 2.097 0.958
    50 7.405 0.289 1.363 0.928
    60 3.603 0.285 3.881 0.969
    下载: 导出CSV

    表  3  由Forchheimer方程表征淤泥基质试样的渗流规律

    Table  3.   Curve fitting results of seepage velocity against hydraulic gradient for typical specimens with mucky matrix using Forchheimer equation

    含石量
    /%
    -J=-aV+bV2(Equation(8)) K(×10-8m·s-1) R2
    a b
    30 10.110 1.120 0.999 0.905
    40 14.695 2.454 0.687 0.912
    50 7.284 0.556 1.386 0.892
    60 4.945 0.425 2.042 0.913
    下载: 导出CSV
  • Afifipour M, Moarefvand P. 2014. Mechanical behavior of bimrocks having high rock block proportion[J]. International Journal of Rock Mechanics and Mining Sciences, 65: 40-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b6649e680712bbdd0f916ddd37d158e
    Coli N, Berry P, Boldini D, 2011. In situ non-conventional shear tests for the mechanical characterisation of a bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 48(1): 95-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0732a8744655d28d2f1d234112a9c6dc
    Coli N, Berry P, Boldini D, et al. 2012. The contribution of geostatistics to the characterisation of some bimrock properties[J]. Engineering Geology, 137: 53-63. http://cn.bing.com/academic/profile?id=917e1da4e3341b9a4f2674e1e57cceb0&encoded=0&v=paper_preview&mkt=zh-cn
    Dong Y. 2005. Test research on the mechanics characteristics of rock-soil aggregate mixture[D]. Chongqing: Chongqing Jiaotong University.
    Gu J L, Li X, Li S D, et al. 2009. Development of servo-control rock and soil aggregate permeability test apparatus[J]. Journal of Engineering Geology, 17(5): 711-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200905021
    Guo Q G. 1998. Engineering properties and applications of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press.
    Hu F, Li Z Q, Hu R L, et al. 2018. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 37(3): 766-778. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201803024
    Li X, Liao Q L, He J M, et al. 2007. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 26(12): 2377-2384.
    Lindquist E S. 1994. The strength and deformation properties of mélange[D]. Berkeley: University of California.
    Medley E W. 1994. The engineering characterization of melanges and similar block-in-matrix rocks(bimrocks)[D]. Berkeley: University of California.
    Medley E W. 2002. Estimating block size distributions of melanges and similar block-in-matrix rocks(bimrocks)[C]//Proc. 5th North American Rock Mechanics Symposium. Toronto, Canada: [s.n.].
    Sonmez H, Gokceoglu C, Medley E, et al. 2006. Estimating the uniaxial compressive strength of a volcanic bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 43: 554-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b04cf35cdc24f8fc245db7496ab3b2a
    Sonmez H, Gokceoglu C, Tuncay E, et al. 2004. Relationships between volumetric block proportions and overall UCS of a volcanic bimrock[J]. Felsbau Rock Soil Eng, 22: 27-34. http://cn.bing.com/academic/profile?id=4eb0badf7ac3b9587e1e1878349da6fd&encoded=0&v=paper_preview&mkt=zh-cn
    Shi W M, Zheng H L, Liu W P, et al. 2005. Experiment research on shear strength index of gravel-soil in Three-Gorge reservoir area[J]. Chongqing Architecture, 30-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqjz200502009
    Tian Y M, Guo M C, Gu Z J. 2006. Mechanical properties and behaviors of macroscopically isotropic mélange[J]. Chinese Journal of Geotechnical Engineering, 28(3): 363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200603016
    Vallejo L E, Mawby R. 2000. Porosity influence on the shear strength of granular material-clay mixtures[J]. Engineering Geology, 58(2): 125-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03800a81915d7afc9586a2646dbbbdcd
    Wang Y, L C H, Hu Y Z.2019.3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography(CT)[J]. Engineering Geology, 248: 61-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2499f8a9f5cfd22a62d4858f0a1a9806
    Wang Y, Li X, Zheng B, et al. 2016a. Experimental study on the non-Darcy flow characteristics of soil-rock mixture[J]. Environmental Earth Sciences, 75(9): 756. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=723ed84f9b42ebd99fb076474fa436b4
    Wang Y, Li X, Zheng B, et al. 2016b. Investigation of the effect of soil matrix on flow characteristics for soil and rock mixture[J]. Géotechnique Letters, 6(3): 226-233. http://cn.bing.com/academic/profile?id=a709334a32c967962a543a31d8e79ba3&encoded=0&v=paper_preview&mkt=zh-cn
    Wang Y, Li X, Hu R L, et al. 2015a. Review of research process and application of ultrasonic testing for rock and soil[J]. Journal of Engineering Geology, 23(2): 287-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201502016
    Wang Y, Li X, Li S D, et al. 2015b. Cracking deformation characteristics for rock and soil aggregate under uniaxial compressive test[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S1): 3541-3552.
    Wang Y, Li X. 2014. Research on damage cracking for rock and soil aggregate using calculation meso-mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (S2): 4020-4031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2079
    Wang Y, Li X, Hu R L, et al. 2015. Experimental study of the ultrasonic and mechanical properties of SRM under compressive loading[J]. Environ Earth Sci, 74(6): 5023-5037. http://cn.bing.com/academic/profile?id=5ee0615fc7439927f3a990314eaf71ab&encoded=0&v=paper_preview&mkt=zh-cn
    Xie W L, Wang J D, Zhang L H. 2005. Testing study on characteristics of strength and deformation for coarse materials[J]. Chinese Journal of Rock Mechanics and Engineering, 24(3): 430-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200503012
    Xia J G, Hu R L, Qi S W, et al. 2017. Large-scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 36(8): 2031-2039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201708020
    Xia J G. 2017. Precise detection of the structure of soil rock mixture and mechanical effect of oversized block[D]. Beijing: University of Chinese Academy of Sciences.
    Xu W J, Hu R L, Tan R J, et al. 2006. Study on field test of rock-soil aggregate on right band of longpan in tiger-leaping gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 25(6): 1270-1277. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200606031.htm
    Xu W J, Hu R L, Yue Z Q, et al. 2008. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 27(5): 997-1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200805016
    Xu W J. 2008. Study on meso-structural mechanics(M-SM) of soil-rock mixture(S-RM) and its slope stability[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.
    Xu W J, Xu Q, Hu R L. 2011. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 48(8): 1235-1247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aac455bb45598b49513fc357d9186b4a
    You X H, Tang J S. 2002. Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 21(10): 1537-1540. http://cn.bing.com/academic/profile?id=95ffd49bde417c71057fbec13b0ca996&encoded=0&v=paper_preview&mkt=zh-cn
    You X H. 2001. Stochastic structural model of the earth-rock aggregate and its application[D]. Beijing: Beijing Jiaotong University.
    Zhang G, Zhang J M. 2004. Experimental study on monotonic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 26(1): 21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200401003
    Zhang X Y. 2015. Study on the engineering geological characteristics of zhangmu deposit and its slope stability[D]. Beijing: University of Chinese Academy of Sciences.
    董云. 2005.土石混合料力学特性的试验研究[D].重庆: 重庆交通学院. http://cdmd.cnki.com.cn/article/cdmd-10618-2008013109.htm
    顾金略, 李晓, 李守定, 等. 2009.伺服控制土石混合体压力渗透仪研究[J].工程地质学报, 17(5): 711-716. http://www.gcdz.org/article/id/8480
    郭庆国. 1998.粗粒土的工程特性及应用[M].郑州:黄河水利出版社.
    胡峰, 李志清, 胡瑞林, 等. 2018.基于大型直剪试验的土石混合体剪切带变形特征试验研究[J].岩石力学与工程学报, 37(3): 766-778. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201803024
    李晓, 廖秋林, 赫建明, 等. 2007.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报, 26(12): 2377-2384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200712001
    时卫民, 郑宏录, 刘文平, 等. 2005.三峡库区碎石土抗剪强度指标的试验研究[J].重庆建筑: 30-35. http://d.old.wanfangdata.com.cn/Periodical/cqjz200502009
    田永铭, 郭明传, 古智君. 2006.宏观各向同性混杂岩力学特性及性状研究[J].岩土工程学报, 28(3): 363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200603016
    王宇, 李晓, 胡瑞林, 等. 2015a.岩土超声波测试研究进展及应用综述[J].工程地质学报, 23(2): 287-300. doi: 10.13544/j.cnki.jeg.2015.02.014
    王宇, 李晓, 李守定, 等. 2015b.单轴压缩条件下土石混合体开裂特征研究[J].岩石力学与工程学报, 34 (S1): 3541-3552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201604280000002769
    王宇, 李晓. 2014.土石混合体损伤开裂计算细观力学探讨[J].岩石力学与工程学报, 33 (S2): 4020-4031. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2014z2079
    武明. 1997.土石混合非均质填料力学特性试验研究[J].公路, (1): 40-42, 49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700121327
    夏加国, 胡瑞林, 祁生文, 等. 2017.含超径颗粒土石混合体的大型三轴剪切试验研究[J].岩石力学与工程学报, 36(8): 2031-2039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201708020
    夏加国. 2017.土石混合体结构的力学效应与精细化探测[D].北京: 中国科学院大学.
    谢婉丽, 王家鼎, 张林洪. 2005.土石粗粒料的强度和变形特性的试验研究[J].岩石力学与工程学报, 24(3)430-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200503012
    徐文杰, 胡瑞林, 谭儒蛟, 等. 2006.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报, 25(6): 1270-1277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200606028
    徐文杰. 2008.土石混合体细观结构力学及其边坡稳定性研究[D].北京: 中国科学院研究生院.
    徐文杰, 胡瑞林, 岳中琦, 等. 2008.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J].岩石力学与工程学报, 27(5): 997-1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200805016
    油新华, 汤劲松. 2002.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报, 21(10): 1537-1540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200210021
    油新华. 2001.土石混合体随机结构模型及其应用研究[D].北京: 北方交通大学.
    张嘎, 张建民. 2004.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报, 26(1): 21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200401003
    张小艳. 2015.樟木堆积体工程地质特性及稳定性研究[D].北京: 中国科学院大学. http://www.irgrid.ac.cn/handle/1471x/1124372?mode=full&submit_simple=Show+full+item+record
  • 加载中
图(49) / 表(3)
计量
  • 文章访问数:  9339
  • HTML全文浏览量:  749
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-02-17
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回