RESEARCH ON ENGINEERING GEOMECHANICS AND STRUCTURAL EFFECT OF SOIL-ROCK MIXTURE
-
摘要: 土石混合体是一种土-石混杂、分布广泛、性质特殊的地质体,也是众多山区滑坡的重要载体。复杂的土-石结构组成是此类介质物理力学特性复杂、难以把控的关键。本文通过多尺度宏-微观室内和现场物理力学试验与模拟,对土石混合体的强度特性、变形特性和渗透特性及其结构控制机理展开了深入研究,系统阐明了含石量、块石形状、基质组分、土-石级配等关键结构因子的制约规律,进一步揭示了土石混合体强度和变形特征随机性的土石结构控制规律,提出了不同结构状态下强度参数的正确获取方法;研究了不同含石量土石混合体的非线性渗透特性,获得了非线性渗流计算模型及其抗渗变形优化设计方法,为全面建立基于真实土石结构和非线性本构关系的新一代土石混合体滑坡预测预警体系提供一定的理论支撑。Abstract: Soil-rock mixture (S-RM) is one of the widely distributed and unique geological materials in China and around the world. It is composed of loose rocks and soil, and has become a key carrier for mountain geological hazards. The complex structure of S-RM is the key to evaluate its special physical and mechanical properties. In this paper, the strength, deformation and permeability characteristics of S-RM and its structural control mechanisms are thoroughly studied, based on the multi-scale macro and micro tests, physical and mechanical field tests, numerical simulation, in order to interpret the control mechanisms of crucial structure factors. The factors include rock proportion, soil-rock shape, matrix composition and internal soil-rock granularity composition. Furthermore, the soil-rock control laws of the randomness of the S-RM strength and deformation characteristics are determined. In addition, much more accurate acquisition methods of strength parameters in different structural states are also proposed. The nonlinear seepage calculation model and its optimal design method of anti-seepage deformation are obtained, through the study on the nonlinear permeability characteristics of S-RM with different stone contents. In summary, this study provides a certain theoretical support for the comprehensive establishment of new generation of S-MR landslide early-warning system, based on the real soil-rock structures and nonlinear constitutive relation.
-
表 1 450 kV通用型工业CT的系统性能指标
Table 1. Performance index for 450 kV universal industrial computed tomography
项目 指标 有效扫描口径 φ800 mm 有效扫描高度 1000 mm 射线穿透最大厚度 等效50 mm Fe 工件最大重量 200 kg 空间分辨率 4 Lp/mm(最佳)0.125 mm×0.125 mm×0.125 mm 透视相对灵敏度 1%(10 mmFe后) 密度分辨率 0.1%(3σ) 扫描层厚 0.13 mm 扫描时间/每层 最快1 min 图像重建时间 30 sec 气孔分辨能力 φ 0.3 mm 夹杂物分辨能力 φ0.1 mm 裂纹分辨能力 0.05 mm×15 mm 工作台平移定位精度 ±0.02 mm 工作台旋转定位精度 ±5角秒 表 2 由Forchheimer方程表征黏土基质试样的渗流规律
Table 2. Curve fitting results of seepage velocity against hydraulic gradient for typical specimens using Forchheimer equation
含石量
/%-J=-aV+bV2(Equation(8)) K(×10-8m·s-1) R2 a b 30 4.205 0.590 3.513 0.998 40 4.824 0.274 2.097 0.958 50 7.405 0.289 1.363 0.928 60 3.603 0.285 3.881 0.969 表 3 由Forchheimer方程表征淤泥基质试样的渗流规律
Table 3. Curve fitting results of seepage velocity against hydraulic gradient for typical specimens with mucky matrix using Forchheimer equation
含石量
/%-J=-aV+bV2(Equation(8)) K(×10-8m·s-1) R2 a b 30 10.110 1.120 0.999 0.905 40 14.695 2.454 0.687 0.912 50 7.284 0.556 1.386 0.892 60 4.945 0.425 2.042 0.913 -
Afifipour M, Moarefvand P. 2014. Mechanical behavior of bimrocks having high rock block proportion[J]. International Journal of Rock Mechanics and Mining Sciences, 65: 40-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b6649e680712bbdd0f916ddd37d158e Coli N, Berry P, Boldini D, 2011. In situ non-conventional shear tests for the mechanical characterisation of a bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 48(1): 95-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0732a8744655d28d2f1d234112a9c6dc Coli N, Berry P, Boldini D, et al. 2012. The contribution of geostatistics to the characterisation of some bimrock properties[J]. Engineering Geology, 137: 53-63. http://cn.bing.com/academic/profile?id=917e1da4e3341b9a4f2674e1e57cceb0&encoded=0&v=paper_preview&mkt=zh-cn Dong Y. 2005. Test research on the mechanics characteristics of rock-soil aggregate mixture[D]. Chongqing: Chongqing Jiaotong University. Gu J L, Li X, Li S D, et al. 2009. Development of servo-control rock and soil aggregate permeability test apparatus[J]. Journal of Engineering Geology, 17(5): 711-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200905021 Guo Q G. 1998. Engineering properties and applications of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press. Hu F, Li Z Q, Hu R L, et al. 2018. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 37(3): 766-778. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201803024 Li X, Liao Q L, He J M, et al. 2007. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 26(12): 2377-2384. Lindquist E S. 1994. The strength and deformation properties of mélange[D]. Berkeley: University of California. Medley E W. 1994. The engineering characterization of melanges and similar block-in-matrix rocks(bimrocks)[D]. Berkeley: University of California. Medley E W. 2002. Estimating block size distributions of melanges and similar block-in-matrix rocks(bimrocks)[C]//Proc. 5th North American Rock Mechanics Symposium. Toronto, Canada: [s.n.]. Sonmez H, Gokceoglu C, Medley E, et al. 2006. Estimating the uniaxial compressive strength of a volcanic bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 43: 554-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b04cf35cdc24f8fc245db7496ab3b2a Sonmez H, Gokceoglu C, Tuncay E, et al. 2004. Relationships between volumetric block proportions and overall UCS of a volcanic bimrock[J]. Felsbau Rock Soil Eng, 22: 27-34. http://cn.bing.com/academic/profile?id=4eb0badf7ac3b9587e1e1878349da6fd&encoded=0&v=paper_preview&mkt=zh-cn Shi W M, Zheng H L, Liu W P, et al. 2005. Experiment research on shear strength index of gravel-soil in Three-Gorge reservoir area[J]. Chongqing Architecture, 30-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqjz200502009 Tian Y M, Guo M C, Gu Z J. 2006. Mechanical properties and behaviors of macroscopically isotropic mélange[J]. Chinese Journal of Geotechnical Engineering, 28(3): 363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200603016 Vallejo L E, Mawby R. 2000. Porosity influence on the shear strength of granular material-clay mixtures[J]. Engineering Geology, 58(2): 125-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03800a81915d7afc9586a2646dbbbdcd Wang Y, L C H, Hu Y Z.2019.3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography(CT)[J]. Engineering Geology, 248: 61-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2499f8a9f5cfd22a62d4858f0a1a9806 Wang Y, Li X, Zheng B, et al. 2016a. Experimental study on the non-Darcy flow characteristics of soil-rock mixture[J]. Environmental Earth Sciences, 75(9): 756. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=723ed84f9b42ebd99fb076474fa436b4 Wang Y, Li X, Zheng B, et al. 2016b. Investigation of the effect of soil matrix on flow characteristics for soil and rock mixture[J]. Géotechnique Letters, 6(3): 226-233. http://cn.bing.com/academic/profile?id=a709334a32c967962a543a31d8e79ba3&encoded=0&v=paper_preview&mkt=zh-cn Wang Y, Li X, Hu R L, et al. 2015a. Review of research process and application of ultrasonic testing for rock and soil[J]. Journal of Engineering Geology, 23(2): 287-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201502016 Wang Y, Li X, Li S D, et al. 2015b. Cracking deformation characteristics for rock and soil aggregate under uniaxial compressive test[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S1): 3541-3552. Wang Y, Li X. 2014. Research on damage cracking for rock and soil aggregate using calculation meso-mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (S2): 4020-4031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2079 Wang Y, Li X, Hu R L, et al. 2015. Experimental study of the ultrasonic and mechanical properties of SRM under compressive loading[J]. Environ Earth Sci, 74(6): 5023-5037. http://cn.bing.com/academic/profile?id=5ee0615fc7439927f3a990314eaf71ab&encoded=0&v=paper_preview&mkt=zh-cn Xie W L, Wang J D, Zhang L H. 2005. Testing study on characteristics of strength and deformation for coarse materials[J]. Chinese Journal of Rock Mechanics and Engineering, 24(3): 430-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200503012 Xia J G, Hu R L, Qi S W, et al. 2017. Large-scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 36(8): 2031-2039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201708020 Xia J G. 2017. Precise detection of the structure of soil rock mixture and mechanical effect of oversized block[D]. Beijing: University of Chinese Academy of Sciences. Xu W J, Hu R L, Tan R J, et al. 2006. Study on field test of rock-soil aggregate on right band of longpan in tiger-leaping gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 25(6): 1270-1277. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200606031.htm Xu W J, Hu R L, Yue Z Q, et al. 2008. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 27(5): 997-1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200805016 Xu W J. 2008. Study on meso-structural mechanics(M-SM) of soil-rock mixture(S-RM) and its slope stability[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences. Xu W J, Xu Q, Hu R L. 2011. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 48(8): 1235-1247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aac455bb45598b49513fc357d9186b4a You X H, Tang J S. 2002. Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 21(10): 1537-1540. http://cn.bing.com/academic/profile?id=95ffd49bde417c71057fbec13b0ca996&encoded=0&v=paper_preview&mkt=zh-cn You X H. 2001. Stochastic structural model of the earth-rock aggregate and its application[D]. Beijing: Beijing Jiaotong University. Zhang G, Zhang J M. 2004. Experimental study on monotonic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 26(1): 21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200401003 Zhang X Y. 2015. Study on the engineering geological characteristics of zhangmu deposit and its slope stability[D]. Beijing: University of Chinese Academy of Sciences. 董云. 2005.土石混合料力学特性的试验研究[D].重庆: 重庆交通学院. http://cdmd.cnki.com.cn/article/cdmd-10618-2008013109.htm 顾金略, 李晓, 李守定, 等. 2009.伺服控制土石混合体压力渗透仪研究[J].工程地质学报, 17(5): 711-716. http://www.gcdz.org/article/id/8480 郭庆国. 1998.粗粒土的工程特性及应用[M].郑州:黄河水利出版社. 胡峰, 李志清, 胡瑞林, 等. 2018.基于大型直剪试验的土石混合体剪切带变形特征试验研究[J].岩石力学与工程学报, 37(3): 766-778. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201803024 李晓, 廖秋林, 赫建明, 等. 2007.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报, 26(12): 2377-2384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200712001 时卫民, 郑宏录, 刘文平, 等. 2005.三峡库区碎石土抗剪强度指标的试验研究[J].重庆建筑: 30-35. http://d.old.wanfangdata.com.cn/Periodical/cqjz200502009 田永铭, 郭明传, 古智君. 2006.宏观各向同性混杂岩力学特性及性状研究[J].岩土工程学报, 28(3): 363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200603016 王宇, 李晓, 胡瑞林, 等. 2015a.岩土超声波测试研究进展及应用综述[J].工程地质学报, 23(2): 287-300. doi: 10.13544/j.cnki.jeg.2015.02.014 王宇, 李晓, 李守定, 等. 2015b.单轴压缩条件下土石混合体开裂特征研究[J].岩石力学与工程学报, 34 (S1): 3541-3552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201604280000002769 王宇, 李晓. 2014.土石混合体损伤开裂计算细观力学探讨[J].岩石力学与工程学报, 33 (S2): 4020-4031. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2014z2079 武明. 1997.土石混合非均质填料力学特性试验研究[J].公路, (1): 40-42, 49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700121327 夏加国, 胡瑞林, 祁生文, 等. 2017.含超径颗粒土石混合体的大型三轴剪切试验研究[J].岩石力学与工程学报, 36(8): 2031-2039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201708020 夏加国. 2017.土石混合体结构的力学效应与精细化探测[D].北京: 中国科学院大学. 谢婉丽, 王家鼎, 张林洪. 2005.土石粗粒料的强度和变形特性的试验研究[J].岩石力学与工程学报, 24(3)430-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200503012 徐文杰, 胡瑞林, 谭儒蛟, 等. 2006.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报, 25(6): 1270-1277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200606028 徐文杰. 2008.土石混合体细观结构力学及其边坡稳定性研究[D].北京: 中国科学院研究生院. 徐文杰, 胡瑞林, 岳中琦, 等. 2008.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J].岩石力学与工程学报, 27(5): 997-1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200805016 油新华, 汤劲松. 2002.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报, 21(10): 1537-1540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200210021 油新华. 2001.土石混合体随机结构模型及其应用研究[D].北京: 北方交通大学. 张嘎, 张建民. 2004.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报, 26(1): 21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200401003 张小艳. 2015.樟木堆积体工程地质特性及稳定性研究[D].北京: 中国科学院大学. http://www.irgrid.ac.cn/handle/1471x/1124372?mode=full&submit_simple=Show+full+item+record -