地震作用下边坡随机动力分析方法的若干进展

赵留园 黄雨

赵留园, 黄雨. 2020.地震作用下边坡随机动力分析方法的若干进展[J].工程地质学报, 28(3): 584-596. doi: 10.13544/j.cnki.jeg.2020-078
引用本文: 赵留园, 黄雨. 2020.地震作用下边坡随机动力分析方法的若干进展[J].工程地质学报, 28(3): 584-596. doi: 10.13544/j.cnki.jeg.2020-078
Zhao Liuyuan, Huang Yu. 2020. Advances in stochastic dynamic analysis of slopes under earthquakes[J]. Journal of Engineering Geology, 28(3): 584-596. doi: 10.13544/j.cnki.jeg.2020-078
Citation: Zhao Liuyuan, Huang Yu. 2020. Advances in stochastic dynamic analysis of slopes under earthquakes[J]. Journal of Engineering Geology, 28(3): 584-596. doi: 10.13544/j.cnki.jeg.2020-078

地震作用下边坡随机动力分析方法的若干进展

doi: 10.13544/j.cnki.jeg.2020-078
基金项目: 

国家自然科学基金 41625011

国家重点研发计划课题 2017YFC1501304

详细信息
    作者简介:

    赵留园(1990-), 男, 博士, 地质工程专业.E-mail: 1410270@tongji.edu.cn

    通讯作者:

    黄雨(1973-), 男, 博士, 教授, 博士生导师, 主要从事工程地质教学与科研工作. E-mail: yhuang@tongji.edu.cn

  • 中图分类号: P642.27

ADVANCES IN STOCHASTIC DYNAMIC ANALYSIS OF SLOPES UNDER EARTHQUAKES

Funds: 

the National Natural Science Foundation of China 41625011

the National Key R & D Program of China 2017YFC1501304

  • 摘要: 不确定性问题是边坡工程抗震设计所面临的巨大挑战。为此, 本文综述了近年来在边坡随机动力分析方法方面的相关研究, 并探讨了此类分析方法在边坡工程抗震设计中的应用前景。首先, 回顾了在边坡动力稳定性方面的已有研究成果, 分析了边坡工程中所涉及的不确定性问题。其次, 总结了边坡随机动力分析的流程, 引入了一种基于概率密度演化的边坡随机动力分析框架。然后重点介绍了随机动力分析中的地震动不确定性, 通过典型台站实测资料说明了地震动不确定性的存在性, 介绍了基于场地特征的随机地震动模型。在此基础上, 阐述了边坡随机动力分析的具体内容, 主要包括:(1)边坡随机动力响应分析; (2)边坡动力可靠度分析; (3)边坡地震易损性分析; (4)边坡动力失稳及风险评估; (5)边坡抗震性能优化设计等。最后, 回顾了边坡随机动力分析方法的若干进展, 分析了所取得的成果并进行了展望。总的来说, 边坡随机动力分析将确定性分析拓展到了基于完备概率集的不确定性分析, 为边坡工程抗震设计提供了一定的理论参考, 但在随机地震动模拟、多随机因素耦合、支护结构优化设计等方面仍需进一步完善。
  • 图  1  边坡随机动力分析流程

    Figure  1.  Processes of slope stochastic dynamic analysis

    图  2  地震动不确定性的典型案例

    (数据源自https://ngawest2.berkeley.edu)

    Figure  2.  Typical case of ground motion uncertainty

    (Data source https://ngawest2.berkeley.edu)

    图  3  边坡不同设计水准下的易损性曲线(Huang et al., 2018a)

    Figure  3.  Seismic fragility curves for seismic assessment of slope under different threshold level(Huang et al., 2018a)

    图  4  随机地震作用下失稳体积概率演化曲面(Huang et al., 2018c)

    Figure  4.  Probability evolution surface of sliding volume under random earthquake(Huang et al., 2018c)

  • Al-Homoud A S, Tahtamoni W W. 2000. Reliability analysis of three-dimensional dynamic slope stability and earthquake-induced permanent displacement[J]. Soil Dynamics and Earthquake Engineering, 19(2): 91-114. http://cn.bing.com/academic/profile?id=3f2a9fb4444526369e5958993cdfe5c1&encoded=0&v=paper_preview&mkt=zh-cn
    Al-Homoud A S, Tahtamoni W W. 2001. A reliability based expert system for assessment and mitigation of landslides hazard under seismic loading[J]. Natural Hazards, 24(1): 13-51. http://cn.bing.com/academic/profile?id=f59f651a6f4be949c744880a85ebd7be&encoded=0&v=paper_preview&mkt=zh-cn
    Bao Y J, Huang Y, Liu G R, et al. 2018. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part I:initiation process and slope failure[J]. International Journal of Computational Methods, 1850150. http://cn.bing.com/academic/profile?id=7acd05852124b1bfaaea6957396b8a37&encoded=0&v=paper_preview&mkt=zh-cn
    Bray J D, Travasarou T. 2007. Simplified procedure for estimating earthquake-induced deviatoric slope displacements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 133(4): 381-392. doi: 10.1061/(ASCE)1090-0241(2007)133:4(381)
    Cacciola P, Deodatis G. 2011. A method for generating fully non-stationary and spectrum-compatible ground motion vector processes[J]. Soil Dynamics & Earthquake Engineering, 31(3): 351-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6f778014710926abcc64191148e2582
    Clough R W, Penzien J. 1975. Dynamics of structures[M]. New York: McGraw-Hill.
    Cui P. 2014. Progress and prospects in research on mountain hazards in China[J]. Progress in Geography, 33(2): 145-152.
    Cui P, Wei F Q, He S M, et al. 2008. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Journal of Mountain Science, 26(3): 280-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200803006
    Deng T, Lu Q W, Wu S J, et al. 2019. Seismic stability analysis for anchor-frame reinforced slope using general slice principle[J]. Journal of Engineering Geology, 27(3): 601-607. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201903016
    Dong J H, Zhang Y, Zhu Y P, et al. 2015. Random seismic response and dynamic reliability analysis of frame with prestressed anchors for slope stability[J]. China Journal of Highway and Transport, 28(10): 26-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglxb201510004
    Fan G, Zhang J, Wu J, et al. 2016. Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table[J]. Rock Mechanics & Rock Engineering, 1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a97408006fdbdd00e1221b9df082f6b
    Griffiths D V, Huang J S, Fenton G A. 2009. Influence of spatial variability on slope reliability using 2-D random fields[J]. Journal of Geotechnical and Geoenvironmental Engineering, 135(10): 1367-1378. doi: 10.1061/(ASCE)GT.1943-5606.0000099
    Housner G W. 1947. Characteristics of strong-motion earthquakes[J]. Bulletin of the Seismological Society of America, 37(1): 19-31. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1418725f443cdbac5adcbbbb6187f02a
    Hu Y X. 2006. Earthquake engineering[M]. 2nd ed. Beijing: Seismological Press.
    Huang R Q. 2009. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200906021
    Huang R Q, Zhao J J, Ju N P, et al. 2013. Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China[J]. Natural Hazards, 68 : 1021-1039. doi: 10.1007/s11069-013-0671-5
    Huang R Q, Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12 th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200812028
    Huang Y, Dai Z, Zhang W. 2014. Geo-disaster modeling and analysis: an SPH-based approach[M]. Springer, Berlin, Heidelberg.
    Huang Y, Hu H, Xiong M. 2018a. Performance-based seismic fragility analysis of retaining walls based on the probability density evolution method[J]. Structure and Infrastructure Engineering, 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25758c9ab3f2addb5c620932fe16529
    Huang Y, Hu H, Xiong M. 2018b. Probability density evolution method for seismic displacement-based assessment of earth retaining structures[J]. Engineering Geology, 234 : 167-173. doi: 10.1016/j.enggeo.2018.01.019
    Huang Y, Zhao L, Xiong M, et al. 2018c. Critical slip surface and landslide volume of a soil slope under random earthquake ground motions[J]. Environmental Earth Sciences, 77:787. doi: 10.1007/s12665-018-7974-5
    Huang Y, Xiong M. 2017a. Dynamic reliability analysis of slopes based on the probability density evolution method[J]. Soil Dynamics & Earthquake Engineering, 94 : 1-6. http://cn.bing.com/academic/profile?id=d86bd2fa3ee0fc7a78d874cbc75545ba&encoded=0&v=paper_preview&mkt=zh-cn
    Huang Y, Xiong M. 2017b. Probability density evolution method for seismic liquefaction performance analysis of earth dam[J]. Earthquake Engineering & Structural Dynamics, 46 : 925-943. http://cn.bing.com/academic/profile?id=8b8a5caddadc87017f268105dc15e2ab&encoded=0&v=paper_preview&mkt=zh-cn
    Huang Y, Xiong M, Zhou H. 2015. Ground seismic response analysis based on the probability density evolution method[J]. Engineering Geology, 198 : 30-39. doi: 10.1016/j.enggeo.2015.09.004
    Huang Y, Xu X, Mao W. 2020. Numerical performance assessment of slope reinforcement using a pile-anchor structure under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 129:105963. doi: 10.1016/j.soildyn.2019.105963
    Huang Y, Zhang W, Xu Q, et al. 2012. Run-out analysis of flow-like landslides triggered by the MS8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 9(2): 275-283. doi: 10.1007/s10346-011-0285-5
    Jha S K, Suzuki K. 2009. Liquefaction potential index considering parameter uncertainties[J]. Engineering Geology, 107 : 55-60. doi: 10.1016/j.enggeo.2009.03.012
    Jiang S H, Huang J S. 2016. Efficient slope reliability analysis at low-probability levels in spatially variable soils[J]. Computers and Geotechnics, 75 : 18-27. doi: 10.1016/j.compgeo.2016.01.016
    Jiang S H, Li D Q, Cao Z J, et al. 2014. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 141:04014096. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=990b2602c5934d6f021a9a44ba27b27b
    Jiang S H, Huang J, Zhou C B. 2017. Efficient system reliability analysis of rock slopes based on Subset simulation[J]. Computers & Geotechnics, 82 : 31-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85ff708cbb0e042c654e9c3417836efd
    Johari A, Khodaparast A R. 2015. Analytical stochastic analysis of seismic stability of infinite slope[J]. Soil Dynamics and Earthquake Engineering, 79 : 17-21. doi: 10.1016/j.soildyn.2015.08.012
    Juang C H, Zhang J, Gong W. 2015. Reliability-based assessment of stability of slopes[C]//IOP Conference Series: Earth and Environmental Science.[S.L.]: IOP Publishing: 012006.
    Kanai K. 1961. An empirical formula for the spectrum of strong earthquake motions[J]. Bull. Earthquake Res. Int., Tokyo, 39, 85-95.
    Kaynia A M, Taucer F, Hancilar U. 2013. Guidelines for deriving seismic fragility functions of elements at risk: Buildings, lifelines, transportation networks and critical facilities[S]. Luxembourg: Publications Office of the European Union.
    Kim J M, Sitar N. 2013. Probabilistic evaluation of seismically induced permanent deformation of slopes[J]. Soil Dynamlcs & Earthquake Engineering, 44:67-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=424594fe931126c391757c3113f001ca
    Lan H X, Zhang Y X, Wu Y M. 2019. Effect of rock mass structure on the dynamics of long-runout landslide[J]. Journal of Engineering Geology, 27(1): 108-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201901012
    Lan H X, Zhou C H, Gao X, et al. 2013. Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan, Ya'an Earthquake, Sichuan Province[J]. Progress in Geography, 32(4): 499-504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201304001
    Li D Q, Jiang S H, Zhou C B. 2012. Reliability analysis of underground rock caverns using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 34(1): 123-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201201014
    Li D Q, Yang Z Y, Cao Z J, et al. 2017. System reliability analysis of slope stability using generalized Subset Simulation[J]. Applied Mathematical Modelling, 46 : 650-664. doi: 10.1016/j.apm.2017.01.047
    Li D Q, Zhou C B. 2009. System reliability analysis of rock slope considering multiple correlated failure modes[J]. Chinese Journal of Rock Mechanics and Engineering, 28(3): 541-551. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200903013
    Li J, Chen J B. 2007. The number theoretical method in response analysis of nonlinear stochastic structures[J]. Computational Mechanics, 39 : 693-708. doi: 10.1007/s00466-006-0054-9
    Li J, Chen J B. 2008. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 30 : 65-77. doi: 10.1016/j.strusafe.2006.08.001
    Li J, Chen J B. 2009. Stochastic Dynamics of Structures[M]. Singapore: John Wiley & Sons.
    Li J, Chen J B. 2010. Advances in the research on probability density evolution equations of stochastic dynamical systems[J]. Advances in Mechanics, 40(2): 170-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201002004
    Li J, Chen J B. 2017. Some new advances in the probability density evolution method[J]. Applied Mathematics and Mechanics, 38(1): 32-43. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201701003
    Li T B, Liu L, Chen G Q. 2015. Numerical simulation and optimization of treatment measures for a tunnel excavated through debris flow fan[J]. Journal of Engineering Geology, 23(4): 712-718. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8725575
    Li X L, Tang H M. 2014. Dynamic centrifugal modelling tests on toppling rock slopes[J]. Chinese Journal of Geotechnical Engineering, 36(4): 687-694. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201404015
    Li Y M, Liu L P. 2011. Design ground motion of engineering structure[M]. Beijing: Science Press.
    Ling H I, Leshchinsky D, Chou N N. 2001. Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan[J]. Soil Dynamics and Earthquake Engineering, 21 : 297-313. doi: 10.1016/S0267-7261(01)00011-2
    Liu H, Xu Q, Li Y, et al. 2013. Response of high-strength rock slope to seismic waves in a shaking table test[J]. Bulletin of the Seismological Society of America, 103 : 3012-3025. doi: 10.1785/0120130055
    Liu H L. 1996. Permanent deformation of foundation and embankment dam due to stochastic seismic excitation[J]. Chinese Journal of Geotechnical Engineering, 18(3): 19-27.
    Liu J, Liu F, Kong X, et al. 2016. Large-scale shaking table model tests on seismically induced failure of concrete-faced rockfill dams[J]. Soil Dynamics & Earthquake Engineering, 82 : 11-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebdee157ec601dee54176490d197143a
    Liu X, Tang H M, Xiong C R. 2013. Patterns, problems, and development trends of analysis methods for slope dynamic reliability[J]. Rock and Soil Mechanics, 34(5): 1217-1234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201305003
    Liu X, Wang Y, Li D Q. 2019. Slope failure modes at large deformation in spatially variable soils[J]. Journal of Engineering Geology, 27(5): 1078-1084. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201905018
    Liu Z J, Wang L, Dan Q W. 2015. Generalized evolutionary spectrum of non-stationary ground motion and its applications in seismic design of hydraulic structures[J]. Journal of Hydraulic Engineering, 46(9): 1028-1036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201509003
    Liu Z J, Zeng B. 2014. Aseismatic design code of hydraulic structures-based probabilistic model for non-stationary ground motion[J]. China Civil Engineering Journal, 47 (S2): 312-316.
    Lizarraga H S, Lai C G. 2014. Effects of spatial variability of soil properties on the seismic response of an embankment dam[J]. Soil Dynamics and Earthquake Engineering, 64 : 113-28. doi: 10.1016/j.soildyn.2014.03.016
    Low B, Lacasse S, Nadim F. 2007. Slope reliability analysis accounting for spatial variation[J]. Georisk, 1 : 177-189.
    Macedo J, Bray J, Abrahamson N, et al. 2018. Performance-based probabilistic seismic slope displacement procedure[J]. Earthquake Spectra, 34 : 673-695. doi: 10.1193/122516EQS251M
    Mahdiyar A, Hasanipanah M, Armaghani D J, et al. 2017. A Monte Carlo technique in safety assessment of slope under seismic condition[J]. Engineering with Computers, 33(4): 807-817. doi: 10.1007/s00366-016-0499-1
    Ministry of Water Resources of the People's Republic of China. 2007. Design code for engineered slope in water resources and hydropower projects(SL 386-2007)[S]. Beijing: China Water Power Press.
    Ministry of Housing and Urban-Rural Development of the People's Republic of China. 2013. Technical code for building slope engineering(GB50330-2013)[S]. Beijing: China Architecture & Building Press.
    Newmark N M. 1965. Effects of earthquakes on dams and embankments[J]. Géotechnique, 15 : 139-160. doi: 10.1680/geot.1965.15.2.139
    Ou J P, Wang G Y. 1998. Random vibration of structure[M]. Beijing: Higher Education Press.
    Pang R, Xu B, Kong X, et al. 2018a. Seismic reliability assessment of earth-rockfill dam slopes considering strain-softening of rockfill based on generalized probability density evolution method[J]. Soil Dynamics and Earthquake Engineering, 107 : 96-107. doi: 10.1016/j.soildyn.2018.01.020
    Pang R, Xu B, Zou D, et al. 2018b. Stochastic seismic performance assessment of high CFRds based on generalized probability density evolution method[J]. Computers and Geotechnics, 97 : 233-245. doi: 10.1016/j.compgeo.2018.01.016
    Paulsen S B, Kramer S L. 2004. Seismic performance evaluation of reinforced slopes[J]. Geosynthetics International, 11(6): 429-38. doi: 10.1680/gein.2004.11.6.429
    Pei X J, Huang R Q, Pei Z, et al. 2011. Analysis on the movement charateristics of rolling rock on slope caused by intensitive earthquake[J]. Journal of Engineering Geology, 19(4): 498-504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201104010
    Peng H S, Jian D, Gu D S. 2005. Earth slope reliability analysis under seismic loadings using neural network[J]. Journal of Central South University of Technology, 12(5): 606-610. doi: 10.1007/s11771-005-0131-9
    Peng J B, Ma R Y, Fan W, et al. 2011. Science contemplation for Wenchuan earthquake of 12 May, 2008[J]. Journal of Earch Sciences and Environment, 31(1): 1-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb200901001
    Priestley M. 1965. Evolutionary spectra and non-stationary processes[J]. Journal of the Royal Statistical Society. Series B(Methodological), 204-237. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231650736/
    Priestley M. 1967. Power spectral analysis of non-stationary random processes[J]. Journal of Sound and Vibration, 6 : 86-97. doi: 10.1016/0022-460X(67)90160-5
    Qi S W, Wu F Q, Yan F Z, et al. 2007. Dynamic response analysis of rock slope[M]. Beijing: Science Press.
    Qi X H, Li D Q. 2018. Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes[J]. Engineering Geology, 239 : 41-49. doi: 10.1016/j.enggeo.2018.03.007
    Qian H T, Xiao R H. 2018. An estimation method for permanent displacements of basic earthquake landslide model with full consideration of slid characters from shake table tests[J]. Journal of Engineering Geology, 26(6): 1585-1592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201806021
    Rathje E M, Kottke A R, Trent W L. 2010. Influence of input motion and site property variabilities on seismic site response analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 136(4): 607-619. doi: 10.1061/(ASCE)GT.1943-5606.0000255
    Rezaeian S, Der Kiureghian A. 2010. Stochastic modeling and simulation of ground motions for performance-based earthquake engineering[R]. Pacific Earthquake Engineering Research Center Report.
    Shao L T, Tang H X, Kong X J, et al. 1999. Finite element analysis for slope stability of earth-rock dam under the action of stochastic seismic[J]. Journal of Hydraulic Engineering, (11): 66-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb199911012
    Shi B. 2017. On the ground sensing system and ground sensing engineerng[J]. Journal of Engineering Geology, 25(3): 582-591.
    Shinoda M, Horii K, Yonezawa T, et al. 2006. Reliability-based seismic deformation analysis of reinforced soil slopes[J]. Soils and Foundations, 46(4): 477-490. doi: 10.3208/sandf.46.477
    Strenk P M, Wartman J. 2011. Uncertainty in seismic slope deformation model predictions[J]. Engineering Geology, 122(1): 61-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c83c978d5d75bb9bbd1128ee27ca7b9
    Tajimi H. 1960. Statistical method of determining the maximum response of a building structure during an earthquake[C]//Proc. 2nd World Conf. on Earthquake Engineering. Tokyo and Kyoto, Ⅱ, 781-798.
    Tang C L, Hu J C, Lin M L, et al. 2009. The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation[J]. Engineering Geology, 106 : 1-19. doi: 10.1016/j.enggeo.2009.02.011
    Tang H M, Lu S. 2018. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 26(1): 129-136. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201801015
    Tsompanakis Y, Lagaros N D, Psarropoulos P N, et al. 2010. Probabilistic seismic slope stability assessment of geostructures[J]. Structure & Infrastructure Engineering, 6(1-2): 179-91.
    Vanmarcke E. 1983. Random fields: analysis and synthesis[M]. Cambridge: MIT Press.
    Wang F W. 2019. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes[J]. Journal of Engineering Geology, 27(1): 98-107. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201901011
    Wang J C. 1996. Random analysis principle of slope engineering[M]. Beijing: China Coal Industry Publishing House.
    Wartman J, Bray J D, Seed R B. 2003. Inclined plane studies of the Newmark sliding block procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 129 : 673-684. doi: 10.1061/(ASCE)1090-0241(2003)129:8(673)
    Wu F Q, Lan H X. 2016. International research status and frontiers on Engineering geology and the environment—a review on IAEG XⅡ Congress[J]. Journal of Engineering Geology, 24(1): 116-129.
    Wu F Q, Qi S W. 2017. Summary of the 10 th Congress of Engineering Geology of China[J]. Journal of Engineering Geology, 25(1): 246-256.
    Wu Z Y, Chen J K, Li Y L, et al. 2015. An algorithm in generalized coordinate system and its application to reliability analysis of seismic slope stability of high rockfill dams[J]. Engineering Geology, 188 : 88-96. doi: 10.1016/j.enggeo.2015.01.019
    Xiao J, Gong W, Martin Ⅱ J R, et al. 2016. Probabilistic seismic stability analysis of slope at a given site in a specified exposure time[J]. Engineering Geology, 212 : 53-62. doi: 10.1016/j.enggeo.2016.08.001
    Xu B, Pang R, Zhou Y. 2020. Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRds[J]. Engineering Geology, 264:105412. doi: 10.1016/j.enggeo.2019.105412
    Xu C, Xu X W, Zhou B G, et al. 2019. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazardmodel[J]. Journal of Engineering Geology, 27(5): 1122-1130.
    Xu Q, Liu H X, Zou W, et al. 2010. Large-scale shaking table test study of acceleration dynamic responses characteristics of slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 29(12): 2420-2428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201012005
    Yan Z X, Zhang S, Zhang X D, et al. 2010. Failure mechanism and stability analysisof slope under earthquake[J]. Journal of Engineering Geology, 18(6): 844-850.
    Yang Z F, Zhang L Q, Zhu J W. 2005. Four new techniques in slope reinforcement[J]. Chinese Journal of Rock Mechanics and Engineering, 24(21): 30-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200521004
    Yin Y P, Li B, Wang W. 2015. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan MS8.0 earthquake and aftershocks[J]. Landslides, 12 : 537-547. doi: 10.1007/s10346-014-0497-6
    Yin Y P. 2009. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1): 29-38.
    Yin Y P, Wang F, Sun P. 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 6 : 139-152. doi: 10.1007/s10346-009-0148-5
    Zhan Z F, Qi S W, He N W, et al. 2019. Shaking table test study of homogeneous rock slope model under strong earthquake[J]. Journal of Engineering Geology, 27(5): 946-954. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201905002
    Zhao L Y, Huang Y, Chen Z Y, et al. 2020. Failure processes and failure mechanism of soil slope under random earthquake ground motions[J]. Soil Dynamics and Earthquake Engineering, (133): 106147.
    Zhang C R, Chen H Q. 2008. Review and prospects on the simulation research of engineering earthquake ground motion[J]. World Earthquake Engineering, 24(2): 150-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdzgc200802027
    Zhang J, Zhang L, Tang W H. 2010. Slope reliability analysis considering site-specific performance information[J]. Journal of Geotechnical and Geoenvironmental Engineering, 137 : 227-238. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220713313/
    Zhang X C, Pei X J, Zhang M S, et al. 2018. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake—A case study in Dangjiacha, Ningxia province[J]. Journal of Engineering Geology, 26(5): 1219-1226.
    Zhang X G. 2000. Engineering geology of China[M]. Beijing: Science Press.
    Zhang Y, Chen G, Zheng L, et al. 2013. Effects of near-fault seismic loadings on run-out of large-scale landslide: A case study[J]. Engineering Geology, 166 : 216-236. doi: 10.1016/j.enggeo.2013.08.002
    Zhang Y, Wang J, Xu Q, et al. 2015. DDA validation of the mobility of earthquake-induced landslides[J]. Engineering Geology, 194 : 38-51. doi: 10.1016/j.enggeo.2014.08.024
    Zheng Y R, Ye H L, Huang R Q. 2009. Analysis and discussion of failure mechanism and fracture surface of slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28(8): 1714-1723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200908024
    Zheng Y R, Ye H L, Huang R Q, et al. 2010. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 30(2): 173-180. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201802008
    Zhu C G, Liu C, Xu Q, et al. 2019. Discrete element numerical simulation research on friction heat in sliding zone of the landslide[J]. Journal of Engineering Geology, 27(3): 651-658. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201903021
    Zhu W Q. 2003. Nonlinear stochastic dynamics and control: framework of Hamilton theory system[M]. Beijing: Science Press.
    Zhuang J Q, Cui P, Ge Y G, et al. 2010. Risk assessment of collapses and landslides caused by 5.12 Wenchuan earthquake—a case study of Dujiangyan—Denchuan highway[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (S2): 3735-3742.
    崔鹏. 2014.中国山地灾害研究进展与未来应关注的科学问题[J].地理科学进展, 33(2): 145-152. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201402001
    崔鹏, 韦方强, 何思明, 等. 2008.5·12汶川地震诱发的山地灾害及减灾措施[J].山地学报, 26(3): 280-282. doi: 10.3969/j.issn.1008-2786.2008.03.006
    邓涛, 卢钦武, 吴尚杰, 等. 2019.基于通用条分原理的锚框支护边坡地震动力稳定分析[J].工程地质学报, 27(3): 601-607. doi: 10.13544/j.cnki.jeg.2018-108
    董建华, 张媛, 朱彦鹏, 等. 2015.框架预应力锚杆边坡锚固结构的随机地震反应及动力可靠度分析[J].中国公路学报, 28(10): 26-33. doi: 10.3969/j.issn.1001-7372.2015.10.004
    胡聿贤. 2006.地震工程学[M]. 2版.北京:地震出版社.
    黄润秋. 2009.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
    黄润秋, 李为乐. 2008. "5.12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
    兰恒星, 周成虎, 高星, 等. 2013.四川雅安芦山地震灾区次生地质灾害评估及对策建议[J].地理科学进展, 32(4): 499-504. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201304001
    兰恒星, 仉义星, 伍宇明. 2019.岩体结构效应与长远程滑坡动力学[J].工程地质学报, 27(1): 108-122. doi: 10.13544/j.cnki.jeg.2019-071
    李典庆, 蒋水华, 周创兵. 2012.基于非侵入式随机有限元法的地下洞室可靠度分析[J].岩土工程学报, 34(1): 123-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201201014
    李典庆, 周创兵. 2009.考虑多失效模式相关的岩质边坡体系可靠度分析[J].岩石力学与工程学报, 28(3): 541-551. doi: 10.3321/j.issn:1000-6915.2009.03.013
    李杰, 陈建兵. 2010.随机动力系统中的概率密度演化方程及其研究进展[J].力学进展, 40(2): 170-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201002004
    李杰, 陈建兵. 2017.概率密度演化理论的若干研究进展[J].应用数学和力学, 38(1): 32-43. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201701003
    李天斌, 刘梁, 陈国庆. 2015.隧道穿越泥石流堆积体的数值模拟及优化处治[J].工程地质学报, 23(4): 712-718. doi: 10.13544/j.cnki.jeg.2015.04.019
    李祥龙, 唐辉明. 2014.逆层岩质边坡地震动力破坏离心机试验研究[J].岩土工程学报, 36(4): 687-694. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201404015
    李英民, 刘立平. 2011.工程结构的设计地震动[M].北京:科学出版社.
    刘汉龙. 1996.随机地震作用下地基及土石坝永久变形分析[J].岩土工程学报, 18(3): 19-27. doi: 10.3321/j.issn:1000-4548.1996.03.003
    刘晓, 唐辉明, 熊承仁. 2013.边坡动力可靠性分析方法的模式, 问题与发展趋势[J].岩土力学, 34(5): 1217-1234. http://d.old.wanfangdata.com.cn/Periodical/ytlx201305003
    刘鑫, 王宇, 李典庆. 2019.考虑土体参数空间变异性的边坡大变形破坏模式研究[J].工程地质学报, 27(5): 1078-1084. doi: 10.13544/j.cnki.jeg.2019100
    刘章军, 王磊, 但庆文, 等. 2015.非平稳地震动的广义演变谱模型及在水工抗震中的应用[J].水利学报, 46(9): 1028-1036. http://d.old.wanfangdata.com.cn/Periodical/slxb201509003
    刘章军, 曾波. 2014.基于水工抗震规范的地震动概率模型研究[J].土木工程学报, 47 (S2): 312-316. http://d.old.wanfangdata.com.cn/Conference/8621095
    欧进萍, 王光远. 1998.结构随机振动[M].北京:高等教育出版社.
    裴向军, 黄润秋, 裴钻, 等. 2011.强震触发崩塌滚石运动特征研究[J].工程地质学报, 19(4): 498-504. doi: 10.3969/j.issn.1004-9665.2011.04.010
    彭建兵, 马润勇, 范文, 等. 2009.汶川大震的科学思考[J].地球科学与环境学报, 31(1): 1-29. doi: 10.3969/j.issn.1672-6561.2009.01.001
    祁生文, 伍法权, 严福章, 等. 2007.岩质边坡动力反应分析[M].北京:科学出版社.
    钱海涛, 肖锐铧. 2018.充分考虑振动台实验滑移特征的地震滑坡基本单元体永久位移估算方法研究[J].工程地质学报, 26(6): 1585-1592. doi: 10.13544/j.cnki.jeg.2017-430
    邵龙潭, 唐洪祥, 孔宪京, 等. 1999.随机地震作用下土石坝边坡的稳定性分析[J].水利学报, (11): 66-71. doi: 10.3321/j.issn:0559-9350.1999.11.012
    施斌. 2017.论大地感知系统与大地感知工程[J].工程地质学报, 25(3): 582-591. doi: 10.13544/j.cnki.jeg.2017.03.002
    唐辉明, 鲁莎. 2018.三峡库区黄土坡滑坡滑带空间分布特征研究[J].工程地质学报, 26(1): 129-136. doi: 10.13544/j.cnki.jeg.2018.01.014
    汪发武. 2019.地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J].工程地质学报, 27(1): 98-107. doi: 10.13544/j.cnki.jeg.2019-034
    王家臣. 1996.边坡工程随机分析原理[M].北京:煤炭工业出版社.
    伍法权, 兰恒星. 2016.国际工程地质与环境研究现状及前沿——第十二届国际工程地质大会(IAEG XⅡ)综述[J].工程地质学报, 24(1): 116-129. doi: 10.13544/j.cnki.jeg.2016.01.015
    伍法权, 祁生文. 2017.第10届全国工程地质大会学术总结[J].工程地质学报, 25(1): 246-256. doi: 10.13544/j.cnki.jeg.2017.01.032
    许冲, 徐锡伟, 周本刚, 等. 2019.同震滑坡发生概率研究——新一代地震滑坡危险性模型[J].工程地质学报, 27(5): 1122-1130. doi: 10.13544/j.cnki.jeg.2019084
    许强, 刘汉香, 邹威, 等. 2010.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报, 29(12): 2420-2428. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201012005
    言志信, 张森, 张学东, 等. 2010.地震边坡失稳机理及稳定性分析[J].工程地质学报, 18(6): 844-850. doi: 10.3969/j.issn.1004-9665.2010.06.005
    杨志法, 张路青, 祝介旺. 2005.4项边坡加固新技术[J].岩石力学与工程学报, 24(21): 30-36.
    殷跃平. 2009.汶川8级地震滑坡特征分析[J].工程地质学报, 17(1): 29-38. doi: 10.3969/j.issn.1004-9665.2009.01.004
    詹志发, 祁生文, 何乃武, 等. 2019.强震作用下均质岩质边坡动力响应的振动台模型试验研究[J].工程地质学报, 27(5): 946-954. doi: 10.13544/j.cnki.jeg.2019168
    张翠然, 陈厚群. 2008.工程地震动模拟研究综述[J].世界地震工程, 24(2): 150-157. http://d.old.wanfangdata.com.cn/Periodical/sjdzgc200802027
    张咸恭. 2000.中国工程地质学[M].北京:科学出版社.
    张晓超, 裴向军, 张茂省, 等. 2018.强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J].工程地质学报, 26(5): 1219-1226. doi: 10.13544/j.cnki.jeg.2018224
    郑颖人, 叶海林, 黄润秋. 2009.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报, 28(8): 1714-1723. doi: 10.3321/j.issn:1000-6915.2009.08.024
    郑颖人, 叶海林, 黄润秋, 等. 2010.边坡地震稳定性分析探讨[J].地震工程与工程振动, 30(2): 173-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzgcygczd201002026
    中华人民共和国水利部. 2007.水利水电工程边坡设计规范(SL 386-2007)[S].北京: 中国水利水电出版社.
    中华人民共和国住房和城乡建设部. 2013.建筑边坡工程技术规范(GB50330-2013)[S].北京: 中国建筑工业出版社.
    朱晨光, 刘春, 许强, 等. 2019.滑坡滑带摩擦热离散元数值模拟研究[J].工程地质学报, 27(3): 651-658. doi: 10.13544/j.cnki.jeg.2018-177
    朱位秋. 2003.非线性随机动力学与控制:Hamilton理论体系框架[M].北京:科学出版社.
    庄建琦, 崔鹏, 葛永刚, 等. 2010. "5·12"汶川地震崩塌滑坡危险性评价——以都汶公路沿线为例[J].岩石力学与工程学报, 29 (S2): 3735-3742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2040
  • 加载中
图(4)
计量
  • 文章访问数:  1425
  • HTML全文浏览量:  423
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-04-25
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回