NON-CONTACT COLLECTION AND 3D FRACTURE NETWORK MODELL ̄ING FOR HIGH-STEEP ROCK SLOPES
-
摘要: 本文分别以非接触式测量与三维裂隙网络模拟技术对汶川县绵虒镇大溪沟沟口高陡斜坡的结构面系统进行了深入研究。以无人机、数字近景摄影测量与三维激光扫描方法建立了现场斜坡的三维DEM模型并识别与解译了斜坡的结构面系统。尤其是采用无人机与近景摄影测量技术,识别并解译了整体斜坡的长大控制性结构面与坡面上的6663条随机构造结构面。基于以上数据,本文提出了一种适用于高陡斜坡分析的超大窗口三维裂隙网络模拟方法,采用概率统计与空间几何推导的方法,建立了岩体三维结构面的直径、产状与密度计算方法。这种方法更加简便且针对性强,现场验证也表明其具有较高的模拟精度。Abstract: This paper applies non-contact acquisition techniques and 3D fracture network modelling to study the discontinuities of high-steep slope located in Miansi Town, Wenchuan County. UAV, 3D laser scanning, and Close Range Photogrammetry are used to generate 3D DEM model and to recognize and interpret discontinuities. Especially, UAV and Close Range Photogrammetry are applied to recognize and interpret controlling large discontinuities and 6663 stochastic structural fractures. Based on the collected data, this paper propose a 3D fracture network modelling method that fits for large sampling windows of high-steep slopes. Stochastic mathematics and spatial geometric derivation methods are used to determine the diameter, orientation, and density of 3D fractures. This method is much easier and to the point, as well as has a higher accuracy according to field verification.
-
表 1 三维裂隙网络参数汇总表
Table 1. List of 3D fracture network parameters
窗口 组序 现场条数 平均产状 半迹长平方ch2 三维空间直径r′ 密度/m-3 分布类型 均值 方差 分布 α β 均值 方差 后缘 1 626 36.2°∠69.6° LN 2.14 17.60 LN 0.57 0.60 2.12 1.99 0.126 2 1403 356°∠35.1° LN 2.79 42.82 LN 0.52 0.68 2.13 2.68 0.132 3 337 109.2°∠63.3° LN 2.69 38.34 LN 0.57 0.65 2.18 2.52 0.021 4 321 162.3°∠70.4° LN 3.19 99.08 LN 0.34 0.79 1.92 3.25 0.028 左边界 1 433 35.1°∠68.7° LN 1.91 34.74 G 1.80 0.81 1.46 1.18 0.037 2 1867 359°∠31.5° LN 2.82 209.27 G 1.21 1.00 1.22 1.22 0.140 3 789 113.6°∠65.6° LN 2.96 343.31 G 1.19 1.02 1.21 1.24 0.110 4 887 154.8°∠74.6° LN 1.98 79.19 G 1.34 0.86 1.15 0.99 0.059 -
Abellán J M, Vilaplana J, Martínez. 2006. Range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria(Eastern Pyrenees, Spain)[J]. Engineering Geology, 88(3-4):136-148. Bai Z H, Li W Z, Li H B, et al. 2018. Engineering rock mass quality assessment for post earthquake high slope at Hongshiyan[J]. Journal of Engineering Geology, 26(5):1155-1161. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805006 Bauer M, Toth T M. 2017. Characterization and DFN modelling of the fracture network in a Mesozoic karst reservoir:Gomba Oilfield, Paleogene Basin, Central Hungary[J]. Journal of Petroleum Geology, 40 (3):319-334. http://cn.bing.com/academic/profile?id=224c80cadaffce5683a7bbd0f3f434a9&encoded=0&v=paper_preview&mkt=zh-cn Bryant F B, Satorra A. 2012. Principles and practice of scaled difference Chi-square testing[J]. Structural Equation Modeling-A Multidisciplinary Journal, 19(3):372-398. http://cn.bing.com/academic/profile?id=4c5757ab7e2e0179ddd6b54c2f91d154&encoded=0&v=paper_preview&mkt=zh-cn Dong X J, Huang R Q. 2006. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (S2):3629-3635. http://cn.bing.com/academic/profile?id=8083087177bff231fbee92d143c8b3c0&encoded=0&v=paper_preview&mkt=zh-cn Dong X J, Xu Q, She J X, et al. 2019. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 45(3):432-441. Du S G, Yong R, Chen J Q, et al. 2017. Graded analysis for slope stability assessment of large open-pit mines[J]. Chinese Journal of Rock Mechanics and Engineering, 36(11):2601-2611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711001 Ge Y F, Xia D, Tang H M, et al. 2017. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 36(12):3050-3061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201712018 Gregory D R, Steven M, Stephen J B, et al. 2016. An elevated perspective:Dyke-related fracture networks analysed with UAV photogrammetry[J]. Acta Geologica Sinica(English Edition), 90 (S1):54-55. http://cn.bing.com/academic/profile?id=1f11e4adc614a0c6242eb60202e3395b&encoded=0&v=paper_preview&mkt=zh-cn Gu D Z. 1979. Foundation of rock engineering geomechanics[M]. Beijing:Science Press. Han X D, Chen J P, Wang Q, et al. 2016. A 3D fracture network model for the undisturbed rock mass at the Songta Dam site based on small samples[J]. Rock Mechanics Rock Engineering, 49(2):611-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=489160e69a86632c89161c6a645357c6 Huang R Q, Xu M, Chen J P, et al. 2004. Detailed description of complex rock mass structure and its engineering application[M]. Beijing:Science Press. Jia H B, Ma S Z, Tang H M, et al. 2002. Study on engineering application of 3-D modeling of rock discontinuity network[J]. Chinese Journal of Rock Mechanics and Engineering, 21(7):976-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200207008 Jia H B, Tang H M, Liu Y R, et al. 2008. Theory and engineering application of three-dimensional network simulation of rock mass structure surface[M]. Beijing:Science Press. Lan H X, Zhang Y X, Wu Y M. 2019. Effect of rock mass structure on the dynamics of long-runout landslide[J]. Journal of Engineering Geology, 27(1):108-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201901012 Li H B, Li X W, Li W Z, et al. 2019. Quantitative assessment for the rockfall hazard in a post-earthquake high rock slope using terrestrial laser scanning[J]. Engineering Geology, 248(8):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0152396729140f56f187c2ccb9efcc7a Li S Q, Zhang H C, Liu R Y. 2017. Semi-automatically counting orientations of rock mass structural plane based on unmanned aerial vehicle photogrammetry[J]. Science Technology and Engineering, 17(26):18-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201726003 Liu Z X, Chen J P, Wang F Y, et al. 2019. Rapid acquisition of geometrical information of rock mass discontinuities based on portable controller frame[J]. Journal of Jilin University(Earth Science Edition), 49(4):1192-1199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201904026 Palleske C K, Hutchinson D J, Elmo D. 2013. Impacts of limited data collection windows on accurate rock simulation using discrete fracture networks[C]//47th U.S. Rock Mechanics/Geomechanics Symposium. America: American Rock Mechanics Association. Roberts G, Poropat G V. 2003. Highwall joint mapping in 3-D at the Moura Mine using SIROJOINT[R]. Queensland: CSIRO Exploration and Mining Technology Court. Song T J, Chen J P, Zhang W, et al. 2015. A method for multivariate parameter dominant partitioning of discontinuities of rock mass based on artificial bee colony algorithm[J]. Rock and Soil Mechanics, 36(3):861-868. http://d.old.wanfangdata.com.cn/Periodical/ytlx201503033 Song X C, Xu W Y. 2004. Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks(Ⅰ):generation of fracture network[J]. Chinese Journal of Rock Mechanics and Engineering, 23(12):2015-2020. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200412014.htm Stephanie C, Robert S, Jane R, et al. 2018. Using near-surface photogrammetry assessment of surface roughness(NSPAS)to assess the effectiveness of erosion control treatments applied to slope forming materials from a mine site in West Africa[J]. Geomorphology, 322(1):188-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6f1b7ea95c09cd9452e20ab2d828c9e Wang F Y, Chen J P, Yang G D, et al. 2012. Solution models of geometrical information of rock mass discontinuities based on digital close range photogrammetry[J]. Journal of Jilin University(Earth Science Edition), 42(6):1839-1846. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206028.htm Xie T. 2011. A window investigation method based on image of rock mass discontinuity[J]. Chinese Journal of Underground Space and Engineering, 7 (S1):1422-1427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj2011z1027 Zhang Q Q. 2018. An application of light drone in interpretation of dangerous rock mass[J]. China's Manganese Industry, 36(5):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201805006 Zhao M Y, Wang F Y, Wang M C, et al. 2018. Rock mass discontinuity acquisition based on photogrammetry of UAV[J]. Journal of Engineering Geology, 26 (S1):480-487. 白志华, 李万州, 李海波, 等. 2018.红石岩震损高陡边坡工程岩体质量评价[J].工程地质学报, 26(5):1155-1161. doi: 10.13544/j.cnki.jeg.2018029 董秀军, 黄润秋. 2006.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报, 25 (S2):3629-3635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2006z2046 董秀军, 许强, 佘金星, 等. 2019.九寨沟核心景区多源遥感数据地质灾害解译初探[J].武汉大学学报(信息科学版):45(3):432-441. 杜时贵, 雍睿, 陈咭扦, 等. 2017.大型露天矿山边坡岩体稳定性分级分析方法[J].岩石力学与工程学报, 36(11):2601-2611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711001 葛云峰, 夏丁, 唐辉明, 等. 2017.基于三维激光扫描技术的岩体结构面智能识别与信息提取[J].岩石力学与工程学报, 36(12):3050-3061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201712018 谷德振. 1979.岩体工程地质力学基础[M].北京:科学出版社. 黄润秋, 许模, 陈剑平, 等. 2004.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社. 贾洪彪, 马淑芝, 唐辉明, 等. 2002.岩体结构面网络三维模拟的工程应用研究[J].岩石力学与工程学报, 21(7):976-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200207008 贾洪彪, 唐辉明, 刘佑荣, 等. 2008.岩体结构面三维网络模拟理论与工程应用[M].北京:科学出版社. 兰恒星, 仉义星, 伍宇明. 2019.岩体结构效应与长远程滑坡动力学[J].工程地质学报, 27(1):108-122. doi: 10.13544/j.cnki.jeg.2019-071 李水清, 张慧超, 刘乳燕. 2017.无人机摄影测量半自动统计岩体结构面产状[J].科学技术与工程, 17(26):18-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201726003 刘子侠, 陈剑平, 王凤艳, 等. 2019.基于活动控制的岩体结构面几何信息快速获取[J].吉林大学学报(地球科学版), 49(4):1192-1199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201904026 宋腾蛟, 陈剑平, 张文, 等. 2015.基于人工蜂群算法的岩体结构面多参数优势分组研究[J].岩土力学, 36(3):861-868. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201503033 宋晓晨, 徐卫亚. 2004.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报, 23(12):2015-2020. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200412014.htm 王凤艳, 陈剑平, 杨国东, 等. 2012.基于数字近景摄影测量的岩体结构面几何信息解算模型[J].吉林大学学报(地球科学版), 42(6):1839-1846. http://www.cqvip.com/QK/91256B/201206/44695113.html 谢韬. 2011.基于岩体结构面影像的窗口调查方法[J].地下空间与工程学报, 7 (S1):1422-1427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj2011z1027 张骞棋. 2018.轻型无人机在危岩体结构面信息解译中的应用[J].中国锰业, 36(5):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmengy201805006 赵明宇, 王凤艳, 王明常, 等. 2018.基于无人机摄影测量的岩体结构面信息获取[J].工程地质学报, 26 (S1):480-487. doi: 10.13544/j.cnki.jeg.2018173 -