朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081.
    引用本文: 朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081.
    Zhu Honghu, Wang Deyang, Wang Baojun, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081.
    Citation: Zhu Honghu, Wang Deyang, Wang Baojun, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081.

    基于光纤传感及数字图像测试的管-土相互作用试验研究

    EXPERIMENTAL STUDY ON PIPE-SOIL INTERACTION USING FIBER OPTIC SENSING AND DIGITAL IMAGE ANALYSIS

    • 摘要: 我国城市化、工业化进程对地下管线的依赖性和需求越来越强,但是近年来相关的重大安全事故频发,亟待加强对管道破坏机理及管-土相互作用的研究。本文基于准分布式光纤布拉格光栅(FBG)技术,在室内开展了一系列平面应变模型试验,利用光纤应变传感器监测了地表加载作用下埋地管道的受力变形特征,据此提出了由应变测值反演管周土压力的计算方法;同时,利用粒子图像测速(PIV)技术获取了管道周边土体的变形规律,并和光纤监测结果进行了对比分析。试验结果表明:采用FBG传感技术,可以有效获取管周土压力分布及土体应变的演化过程;不同埋深率情况下管周土体的变形破坏模式有较大的不同,土拱效应随管道埋深增大而变得更加显著。相关结论为进一步认识埋地管道的灾变机理、提高监测预警水平,提供了一定的参考。

       

      Abstract: In the process of urbanization and industrialization in China, the dependence and demand for underground pipelines are increasing, but a series of catastrophic accidents of underground pipeline have occurred in recent years. Therefore, it is urgent to emphasize the study on pipe-soil interaction and failure mechanism. In this paper, based on the quasi-distributed fiber Bragg grating(FBG)technology, a series of plane-strain model tests are conducted in laboratory. The fiber optic strain sensors are employed to investigate stress and deformation characteristics of buried pipes under the action of surface loading. A calculation method of earth pressures around the pipe is proposed based on fiber optic strain measurements. Meanwhile, the particle image velocimetry(PIV)technique is used to obtain the soil deformation around the pipe. Such deformation results are compared to the fiber optic monitoring results. The test results show that the FBG technology can effectively capture the distribution of earth pressure acting on the buried pipe and the evolution of soil strains. The deformation and failure patterns of soil are quite different for pipes with various burial depths. With the increase of burial depth, the soil arching effect becomes more significant. The conclusions drawn in this paper provide useful reference for evaluating underground pipeline hazards and improving monitoring and early warning levels.

       

    /

    返回文章
    返回