基于光纤传感及数字图像测试的管-土相互作用试验研究

朱鸿鹄 王德洋 王宝军 朱宝 施斌

朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081
引用本文: 朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081
Zhu Honghu, Wang Deyang, Wang Baojun, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081
Citation: Zhu Honghu, Wang Deyang, Wang Baojun, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081

基于光纤传感及数字图像测试的管-土相互作用试验研究

doi: 10.13544/j.cnki.jeg.2020-081
基金项目: 

国家自然科学基金项目 41672277

国家自然科学基金项目 41722209

国家重点研发计划课题 2018YFC1505104

详细信息
    作者简介:

    朱鸿鹄(1979-),男,博士,教授,博士生导师,主要从事地质工程、岩土力学方面的教学和研究工作. E-mail: zhh@nju.edu.cn

  • 中图分类号: P642

EXPERIMENTAL STUDY ON PIPE-SOIL INTERACTION USING FIBER OPTIC SENSING AND DIGITAL IMAGE ANALYSIS

Funds: 

the National Nature Science Foundation of China 41672277

the National Nature Science Foundation of China 41722209

the National Key R & D Program of China 2018YFC1505104

  • 摘要: 我国城市化、工业化进程对地下管线的依赖性和需求越来越强,但是近年来相关的重大安全事故频发,亟待加强对管道破坏机理及管-土相互作用的研究。本文基于准分布式光纤布拉格光栅(FBG)技术,在室内开展了一系列平面应变模型试验,利用光纤应变传感器监测了地表加载作用下埋地管道的受力变形特征,据此提出了由应变测值反演管周土压力的计算方法;同时,利用粒子图像测速(PIV)技术获取了管道周边土体的变形规律,并和光纤监测结果进行了对比分析。试验结果表明:采用FBG传感技术,可以有效获取管周土压力分布及土体应变的演化过程;不同埋深率情况下管周土体的变形破坏模式有较大的不同,土拱效应随管道埋深增大而变得更加显著。相关结论为进一步认识埋地管道的灾变机理、提高监测预警水平,提供了一定的参考。
  • 图  1  FBG传感原理图

    Figure  1.  Principle of the FBG sensing technique

    图  2  PIV技术原理示意图

    Figure  2.  Schematic illustration of the PIV technique

    图  3  Iowa公式的计算模型

    Figure  3.  Computational model of the Iowa formula

    图  4  试验设置示意图

    Figure  4.  Schematic diagram of the test setup

    图  5  加载过程中管道上FBG的应变监测结果

    Figure  5.  Strain monitoring results of the pipe under loading using the FBG sensors

    图  6  不同地表荷载条件下管周的土压力分布(单位:kPa)

    Figure  6.  Distribution of earth pressure around the pipe under different surface loadings(unit: kPa)

    图  7  H水平面上FBG应变监测结果

    Figure  7.  FBG strain monitoring results at level of H

    图  8  FBG应变监测结果与PIV结果对比图

    a. 1号测点;b. 2号测点;c. 3号测点

    Figure  8.  Comparison between FBG strain monitoring results and PIV results

    图  9  不同地表沉降条件下管周土体竖向位移分布云图(单位:mm)

    Figure  9.  Contour of vertical soil displacement around the pipe under different ground surface settlements(unit: mm)

    a. 2.5mm; b. 5mm; c. 7.5mm; d. 10mm

    图  10  不同地表沉降条件下管周土体水平向位移分布云图(单位:mm)

    Figure  10.  Contour of horizontal soil displacement around the pipe under different ground surface settlements(unit: mm)

    a. 2.5mm; b. 5mm; c. 7.5mm; d. 10mm

    图  11  H/D=1条件下的管周土体剪应变场(单位:%)

    Figure  11.  Contour of soil shear strain around the pipe under the condition of H/D=1(unit: %)

    a. 2.5mm; b. 5mm; c. 7.5mm; d. 10mm

    图  12  H/D=1.5条件下的管周土体剪应变场(单位:%)

    Figure  12.  Contour of soil shear strain around the pipe under the condition of H/D=1.5(unit: %)

    a. 2.5mm; b. 5mm; c. 7.5mm; d. 10mm

    图  13  H/D=2条件下的管周土体剪应变场(单位:%)

    Figure  13.  Contour of soil shear strain around the pipe under the condition of H/D=2(unit: %)

    a. 2.5mm; b. 5mm; c. 7.5mm; d. 10mm

    表  1  试验砂土的物理性质

    Table  1.   Physical properties of the test sand

    不均匀
    系数
    Cu
    曲率
    系数
    Cc
    干密度
    ρd/(g·cm-3)
    含水率
    w/%
    最大
    孔隙比
    emax
    最小
    孔隙比
    emin
    相对
    密实度
    Dr
    1.611.061.640.8780.5790.73
    下载: 导出CSV
  • Abolmaali A, Kararam A. 2013. Nonlinear finite-element modeling analysis of soil-pipe interaction[J]. International Journal of Geomechanics, ASCE, 13(3): 197-204. doi: 10.1061/(ASCE)GM.1943-5622.0000196
    Adrian R J. 2005. Twenty years of particle image velocimetry[J]. Experiments in Fluids, 39(2): 159-169. doi: 10.1007/s00348-005-0991-7
    Cauchi S, Cherpillod T, Morison D, et al. 2007. Fiber-optic sensors for monitoring pipe bending due to ground movement[J]. Pipeline and Gas Journal, 234 : 36-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=238f326e04e134606513113f3a3d4c9b
    Chai J, Du W G, Zhang D D, et al. 2019. Study on roof activity law in steeply inclined seams based on BOTDA sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1809-1818. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201909009
    Chai J, Ouyang Y B, Zhang D D, et al. 2020. Theoretical analysis of the mechanical coupling between rock and optical fiber for distributed sensing of overlying strata deformation[J]. Journal of Mining and Strata Control Engineering, doi: 10.135 32/j.jmsce.cn10-1638/td.20191104.001.
    Feng X, Han Y, Wang Z H, et al. 2018. Structural performance monitoring of buried pipelines using distributed fiber optic sensors[J]. Journal of Civil Structural Health Monitoring, 8(3): 1-8.
    Glisic B, Yao Y. 2012. Fiber optic method for health assessment of pipelines subjected to earthquake induced ground movement[J]. Structural Health Monitoring, 11(6): 696-711. doi: 10.1177/1475921712455683
    Hauswirth D, Puzrin A M, Carrera A, et al. 2014. Use of fibre-optic sensors for simple assessment of ground surface displacements during tunnelling[J]. Géotechnique, 64(10): 837-842. doi: 10.1680/geot.14.T.009
    Hu S, Shi B, Wei G Q, et al. 2008. Research on distributed fiber optic monitoring test of polyethylene pipe deformation[J]. Journal of Disaster Prevention and Mitigation Engineering, 28(4): 436-440.
    Huang B, Liu J W, Ling D S, et al. 2015. Application of particle image velocimetry(PIV)in the study of uplift mechanisms of pipe buried in medium dense sand[J]. Journal of Civil Structural Health Monitoring, 5(5): 599-614. doi: 10.1007/s13349-015-0130-y
    Klar A, Marshall A M, Soga K, et al. 2008. Tunneling effects on jointed pipelines[J]. Canadian Geotechnical Journal, 45(1): 131-139. doi: 10.1139/T07-068
    Klar A, Vorster T E B, Soga K, et al. 2005. Soil-pipe-tunnel interaction: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 55(6): 461-466. doi: 10.1680/geot.2005.55.6.461
    Li F, Zhu H H, Zhang C C, et al. 2017. Experimental study on feasibility of fiber Bragg grating-based foundation deformation monitoring[J]. Journal of Zhejiang University(Engineering Scienc), 51(1): 204-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201701026
    Li Y H, Zhu H H, Katsutoshi U, et al. 2004. Deformation field measurement for granular soil model using image analysis[J]. Chinese Journal of Geotechnical Engineering, 26(1): 36-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200401006
    Liu Z Y, Liu J K, Li X, et al. 2018. Application of PIV in model tests on frozen unsaturated soils and grayscale correlation analysis[J]. Chinese Journal of Geotechnical Engineering, 40(2): 313-320. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201802012
    Ma F S, Zhao H J, Zhang Y M, et al. 2010. Numerical simulation of gas pipeline deformation due to surface load[j]. Journal of Engineering Geology, 18 (S1): 285-291.
    Mohamad H, Soga K, Bennett P J, et al. 2012. Monitoring twin tunnel interaction using distributed optical fiber strain measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138(8): 957-967. doi: 10.1061/(ASCE)GT.1943-5606.0000656
    Ni Y F, Qiao Z F, Zhu Y, et al. 2020. Experimental study on uplift failure of anchor plate based on PIV technology[J]. Journal of Civil and Environmental Engineering, 42(1): 24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmyhjgcxb-zyw202001004
    Sargand S, Masada T, Tarawneh B, et al. 2005. Field performance and analysis of large-diameter high-density polyethylene pipe under deep soil fill[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131(1): 39-51. doi: 10.1061/(ASCE)1090-0241(2005)131:1(39)
    Shi B, Zhang D, Zhu H H. 2019. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press.
    Simpson B, Hoult N A, Moore I D. 2015. Distributed sensing of circumferential strain using fiber optics during full-scale buried pipe experiments[J]. Journal of Pipeline Systems Engineering and Practice, 6(4): 04015002. doi: 10.1061/(ASCE)PS.1949-1204.0000197
    Stanier S A, Blaber J, Take W A, et al. 2016. Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal, 53(5): 727-739. doi: 10.1139/cgj-2015-0253
    Sun M Y, Shi B, Duan X C. 2019. Experimental study on the feasibility and influencing factors of pipeline leakage monitoring based on FBG[J]. Journal of Disaster Prevention and Mitigation Engineering, 39(5): 715-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201905004
    White D J, Take W A, Bolton M D. 2003. Soil deformation measurement using particle image velocimetry(PIV) and photogrammetry[J]. Géotechnique, 53(7): 619-632. doi: 10.1680/geot.2003.53.7.619
    Wu H Y, Zhu H H, Zhu B, et al. 2019. Review of underground pipeline monitoring research based on distributed fiber optic sensing[J]. Journal of Zhejiang University(Engineering Science), 53(6): 1057-1070. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201906005
    Wu H, Zhu H H, Zhou G Y, et al. 2020. Experimental study on distributed monitoring of soil shear displacement considering deformation compatibility[J]. Journal of Engineering Geology, doi: 10.135 44/j.cnki.jeg.2019-203.
    Xiao C Z, Wang J Y, Yang A K. 2018. Numerical simulation and mechanical performance analysis of buried pipes subjected to static load[J]. Journal of Disaster Prevention and Mitigation Engineering, 38(1): 22-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201801004
    Zhang C C, Shi B, Zhu H H, et al. 2019. A theoretical framework for detecting and monitoring ground fissures using distributed fiber optic sensing[J]. Journal of Engineering Geology, 27(6): 1473-1482. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201906030
    Zhang C C, Zhu H H, Liu S P, et al. 2018. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 234 : 83-96. doi: 10.1016/j.enggeo.2018.01.002
    Zhang C C, Zhu H H, Shi B. 2016. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement[J]. Scientific Reports, 6: 36469. doi: 10.1038/srep36469
    Zhang C C, Zhu H H, Liu S P, et al. 2020. Quantifying progressive failure of micro-anchored fiber optic cable-sand interface via high-resolution distributed strain sensing[J]. Canadian Geotechnical Journal, 57(5): 1-11.
    Zhang T Q, Li X, Wu X G. 2003. Analysis of longitudinal mechanical properties for pipes during foundation uneven settlement[J]. China Rural Water and Hydropower, (7): 46-48.
    Zhou M, Du Y J, Wang F, et al. 2016. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 38(2): 253-262. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201602008
    Zhou M, Du Y J, Zhang Y J, et al. 2015. Variation of soil arching effect during burying process of HDPE pipes[J]. Chinese Journal of Rock Mechanics and Engineering, 34(2): 414-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201502021
    Zhu H H, She J K, Zhang C C, et al. 2015. Experimental study on pullout performance of sensing optical fibers in compacted sand[J]. Measurement, 73 : 284-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9a3e8bf6d7aded4f8e53cc5e4cd6ed2
    Zhu H H, Shi B, Yan J F, et al. 2013. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 32(4): 821-828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201304022
    Zhu H H, Shi B, Zhang C C. 2020. Current progress and trends in opto-electronic sensor-based monitoring in geo-engineering-a summary of 6 th osmg-2017[J]. Journal of Engineering Geology, 28(1): 178-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb202001020
    柴敬, 杜文刚, 张丁丁, 等. 2019.基于BOTDA技术感测的大倾角煤层顶板活动规律研究[J].岩石力学与工程学报, 38(9): 1809-1818. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201909009
    柴敬, 欧阳一博, 张丁丁, 等. 2020.采场覆岩变形分布式光纤监测岩体-光纤耦合性分析[J].采矿与岩层控制工程学报, doi: 10.135 32/j.jmsce.cn10-1638/td.20191104.001.
    胡盛, 施斌, 魏广庆, 等. 2008.聚乙烯管道变形分布式光纤监测试验研究[J].防灾减灾工程学报, 28(4): 436-440. http://d.old.wanfangdata.com.cn/Periodical/dzxk200804006
    李飞, 朱鸿鹄, 张诚成, 等. 2017.地基变形光纤光栅监测可行性的试验研究[J].浙江大学学报(工学版), 51(1): 204-211. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201701026
    李元海, 朱合华, 上野胜利, 等. 2004.基于图像相关分析的砂土模型试验变形场量测[J].岩土工程学报, 26(1): 36-41. doi: 10.3321/j.issn:1000-4548.2004.01.006
    刘振亚, 刘建坤, 李旭, 等. 2018. PIV技术在非饱和冻土冻胀模型试验中的实现与灰度相关性分析[J].岩土工程学报, 40(2): 313-320. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201802012
    马凤山, 赵海军, 张亚民, 等. 2010.荷载作用下输气管道变形数值模拟[J].工程地质学报, 18 (S1): 285-291. http://www.gcdz.org/article/id/10251
    倪钰菲, 乔仲发, 朱泳, 等. 2020.基于粒子图像测速的锚板抗拔破坏机理试验研究[J].土木与环境工程学报(中英文), 42(1): 24-30. http://d.old.wanfangdata.com.cn/Periodical/tmyhjgcxb-zyw202001004
    施斌, 张丹, 朱鸿鹄. 2019.地质与岩土工程分布式光纤监测技术[M].北京:科学出版社.
    孙梦雅, 施斌, 段新春, 等. 2019.基于FBG的管道渗漏监测可行性及其影响因素试验研究[J].防灾减灾工程学报, 39(5): 715-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201905004
    吴海颖, 朱鸿鹄, 朱宝, 等. 2019.基于分布式光纤传感的地下管线监测研究综述[J].浙江大学学报(工学版), 53(6): 1057-1070. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201906005
    吴涵, 朱鸿鹄, 周谷宇, 等. 2020.考虑变形协调的土体剪切位移分布式测试研究[J].工程地质学报, doi: 10.13544/j.cnki.jeg.2019-203.
    肖成志, 王嘉勇, 杨爱克. 2018.静载作用下埋地管道数值模拟及其力学性能分析[J].防灾减灾工程学报, 38(1): 22-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201801004
    张诚成, 施斌, 朱鸿鹄, 等. 2019.分布式光纤探测地裂缝的理论基础探讨[J].工程地质学报, 27(6): 1473-1482. doi: 10.13544/j.cnki.jeg.2018-319
    张土乔, 李洵, 吴小刚. 2003.地基差异沉降时管道的纵向力学性状分析[J].中国农村水利水电, (7): 46-48. doi: 10.3969/j.issn.1007-2284.2003.07.020
    周敏, 杜延军, 王非, 等. 2016.地层沉陷中埋地HDPE管道力学状态及模型试验分析[J].岩土工程学报, 38(2): 253-262. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201602008
    周敏, 杜延军, 张亚军, 等. 2015.埋地HDPE管道施工过程中土拱效应变化特征研究[J].岩石力学与工程学报, 34(2): 414-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201502021
    朱鸿鹄, 施斌, 严珺凡, 等. 2013.基于分布式光纤应变感测的边坡模型试验研究[J].岩石力学与工程学报, 32(4): 821-828. doi: 10.3969/j.issn.1000-6915.2013.04.022
    朱鸿鹄, 施斌, 张诚成, 等. 2020.地质和岩土工程光电传感监测研究新进展--第六届OSMG国际论坛综述[J].工程地质学报, 28(1): 178-188. doi: 10.13544/j.cnki.jeg.2018-254
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5425
  • HTML全文浏览量:  747
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 修回日期:  2020-03-03
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回