A REVIEW ON PACKING AND HYDRO-MECHANICAL BEHAVIOUR OF BENTONITE PELLET MIXTURES
-
摘要: 膨润土颗粒混合物是高放废物深地质处置库中的一种缓冲/回填材料,掌握其堆积性质与水-力特性是开展处置库安全性能评估的关键基础。本文全面回顾和总结了近年来国内外学者对膨润土颗粒混合物的堆积性质、持水特性、结构特征、渗透特性、胀缩特性及本构模型等方面的研究进展与取得的成果,展望了几个值得进一步研究的问题。结果表明,颗粒混合物的堆积性质与粒径级配密切相关;湿化过程中,颗粒混合物由初始松散结构逐渐转变为胶结融合结构,孔隙结构逐渐趋于均一化,并伴随着颗粒破碎和错动,进而影响其水-力特性。考虑到处置库实际运营环境的复杂性,颗粒混合物的原位填充技术以及多场(热-水-力-化)耦合条件下颗粒混合物的水-力特性是今后值得深入研究的方向。Abstract: Bentonite pellet mixtures are considered as an alternative buffer/backfilling materials for high-level radioactive waste(HLW)repository. The packing and hydro-mechanical behaviour of bentonite pellet mixtures are of great significance for the safety evaluation of the HLW repository. In this paper, previous researches on the packing and hydro-mechanical behaviour of bentonite pellet mixtures are systematically reviewed and summarized. They include the packing dry density and homogeneity, water retention, structural change, hydraulic behaviour, swelling and compression behaviour as well as constitutive model. Meanwhile, several research subjects worthing further investigation are pointed out. Results in the literature indicate that the packing behaviour are highly dependent on the gradation. Upon wetting, the initial loose-structured pellet mixture can gradually transfer to cemented state and finally present a homogeneous appearance at saturation, accompanied with pellet breakage and movement, which can in turn affect the hydro-mechnical behaviour. Considering the complexity of the operation conditions in a HLW repository, further investigations on the emplacement technique and the hydro-mechanical behaviour under coupled thermo-hydro-chemo-mechanical conditions should be carried out.
-
图 2 堆积干密度峰值随粒径比的变化(Liu et al., 2019a)
Figure 2. Evolution of peak packing dry density with dmin/dmax(Liu et al., 2019a)
图 3 颗粒间相互作用(Liu et al., 2019a)
Figure 3. Interaction between pellets(Liu et al., 2019a)
图 4 加权变异系数(WCV)随颗粒特征指数(PCI)的变化(Liu et al., 2020)
Figure 4. Evolution of WCV with PCI(Liu et al., 2020)
图 5 不同干密度FEBEX膨润土颗粒混合物的持水曲线(Hoffmann et al., 2007)
Figure 5. Water retention curves of FEBEX bentonite pellets with different dry densities(Hoffmann et al., 2007)
图 8 不同干密度FEBEX膨润土颗粒混合物的孔径分布曲线(Hoffmann et al., 2007)
Figure 8. Pore size distribution curves of FEBEX bentonite pellet mixtures at different dry densities(Hoffmann et al., 2007)
图 9 注水水化过程中颗粒混合物的结构演化(Van Geet et al., 2005; Molinero-Guerra et al., 2018a)
Figure 9. Structure evolution of pellet mixture during water infiltration(Van Geet et al., 2005; Molinero-Guerra et al., 2018a)
图 12 膨润土颗粒混合物渗透系数随时间变化关系(Hoffmann et al., 2007; 刘樟荣,2019)
Figure 12. Evolution of hydraulic conductivity with time for GMZ and FEBEX bentonite pellet mixtures(Hoffmann et al., 2007; Liu, 2019)
图 14 不同膨润土颗粒混合物膨胀力与干密度的关系(Imbert,2006; Hoffmann et al., 2007; Karland et al., 2008; Stastka,2013; Zhang et al., 2019)
Figure 14. Evolution of swelling pressure with dry density for several bentonite pellet mixtures(Imbert et al., 2006; Hoffmann et al., 2007; Karland et al., 2008; Stastka, 2013; Zhang et al., 2019)
图 15 不同吸力条件下GMZ膨润土颗粒混合物压缩曲线(Zhang et al., 2020)
Figure 15. Compression curves of GMZ bentonite pellet mixtures at different suctions(Zhang et al., 2020)
-
Alonso E E, Romero E, Hoffmann C. 2011. Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study[J]. Géotechnique, 61(4): 329-344. doi: 10.1680/geot.2011.61.4.329 Chen X B. 2018. Packing and static compaction of pellet bentonite for HLW disposal[D]. Lanzhou: Lanzhou University. Chen Y G, Jia L Y, Ye W M, et al. 2017. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 39(1): 138-147. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201701012 Cui Y J, Nguyen X P, Tang A M, et al. 2013. An insight into the unloading/reloading loops on the compression curve of natural stiff clays[J]. Applied Clay Science, 83-84 : 343-348. doi: 10.1016/j.clay.2013.08.003 Cui Y J. 2017. On the hydro-mechanical behaviour of MX80 bentonite-based materials[J]. Journal of Rock Mechanics and Geotechnical Engineering, 9(3): 565-574. doi: 10.1016/j.jrmge.2016.09.003 Darde B, Tang A M, Roux J N, et al. 2020. Effects of the initial granular structure of clay sealing materials on their swelling properties: experiments and DEM simulations[J]. EPJ Nuclear Sciences & Technologies, 6: 1. Dixon D, Sandén T, Jonsson E, et al. 2011. Backfilling of deposition tunnels: Use of bentonite pellets[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB P-11-44. Gens A, Vállejan B, Sánchez M, et al. 2011. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling[J]. Géotechnique, 61(5): 367-386. doi: 10.1680/geot.SIP11.P.015 Hoffmann C, Alonso E E, Romero E. 2004. Fabric changes of a pellet-based bentonite buffer material and its effect on mechanical behaviour[J]. Elsevier Geo-Engineering Book Series, 2 : 341-346. doi: 10.1016/S1571-9960(04)80064-8 Hoffmann C, Alonso E E, Romero E. 2007. Hydro-mechanical behaviour of bentonite pellet mixtures[J]. Physics and Chemistry of the Earth, 32(8-14): 832-849. doi: 10.1016/j.pce.2006.04.037 Imbert C, Villar M V. 2006. Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration[J]. Applied Clay Science, 32(3-4): 197-209. doi: 10.1016/j.clay.2006.01.005 Karnland O, Nilsson U, Weber H, et al. 2008. Sealing ability of Wyoming bentonite pellets foreseen as buffer material-laboratory results[J]. Physics and Chemistry of the Earth, 33: S472-S475. Kim C-S, Man A, Dixon D, et al. 2012. Clay-based pellets for use in tunnel backfill and as gap fill in a deep geological repository: Characterisation of thermal-mechanical properties[R]. Toronto: Nuclear Waste Management Organisation. Köhler S, Mayor J C, Nussbaum C, et al. 2012. Report of the construction of the HE-E experiment[R]. PEBS: NAGRA NAB 11-25. Liu Y. 2016. Investigation on the swelling properties and microstructure mechanism of compacted Gaomiaozi bentonite[J]. Journal of Engineering Geology, 24(3): 451-458. Liu Y M, Cai M F, Wang J. 2007. Thermal properties of buffer material for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, (S2): 3891-3896. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2007S2043.htm Liu Z R. 2019a. Investigation on the packing behaviour and thermal-hydraulic properties of GMZ bentonite pellet mixtures[D]. Shanghai: Tongji University. Liu Z R, Ye W M, Zhang Z, et al. 2019b. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets[J]. Powder Technology, 351 : 92-101. doi: 10.1016/j.powtec.2019.03.038 Liu Z R, Ye W M, Zhang Z, et al. 2019c. A nonlinear particle packing model for multi-sized granular soils[J]. Construction and Building Materials, 221 : 274-282. doi: 10.1016/j.conbuildmat.2019.06.075 Liu Z R, Ye W M, Cui Y J, et al. 2020. Investigation on vibration-induced segregation behaviour of crushed GMZ bentonite pellet mixtures[J]. Construction and Building Materials, 241: 117949. doi: 10.1016/j.conbuildmat.2019.117949 Lloret A, Villar M V, Sanchez M, et al. 2003. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 53(1): 27-40. doi: 10.1680/geot.2003.53.1.27 Lloret A, Villar M V. 2007. Advances on the knowledge of the therm-hydro-mechanical behaviour of heavily compacted FEBEX bentonite[J]. Physics and Chemistry of the Earth, 32 : 701-715. doi: 10.1016/j.pce.2006.03.002 Marjavaara P, Kivikoski H. 2011. Filling the gap between buffer and rock in the deposition hole[R]. Eurajoki: Posiva OY. Masuda R, Asano H, Toguri S, et al. 2007. Buffer construction technique using granular bentonite[J]. Journal of Nuclear Science and Technology, 44(3): 448-455. doi: 10.1080/18811248.2007.9711307 Molinero-Guerra A, Mokni N, Delage P, et al. 2017. In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite[J]. Applied Clay Science, 135 : 538-546. doi: 10.1016/j.clay.2016.10.030 Molinero-Guerra A, Aimedieu P, Bornert M, et al. 2018a. Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography[J]. Applied Clay Science, 165 : 164-169. doi: 10.1016/j.clay.2018.07.043 Molinero-Guerra A, Cui Y J, Mokni N, et al. 2018b. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column[J]. Engineering Geology, 243 : 18-25. doi: 10.1016/j.enggeo.2018.06.006 Molinero-Guerra A, Cui Y J, He Y, et al. 2019. Characterization of water retention, compressibility and swelling properties of a pellet/powder bentonite mixture[J]. Engineering Geology, 248 : 14-21. doi: 10.1016/j.enggeo.2018.11.005 Mokni N, Barnichon J D, Dick P, et al. 2016. Effect of technological macro voids on the performance of compacted bentonite/sand seals for deep geological repositories[J]. International Journal of Rock Mechanics & Mining Sciences, 88 : 87-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d899c6bb1ed605d727e180847fd73fb Pan Z Q, Qian Q H. 2009. Strategic research on geological disposal of high-level radioactive waste[M]. Beijing: Atomic Energy Press. Pusch R, Bluemling P, Johnson L. 2003. Performance of strongly compressed Mx-80 penets under repository-like conditions[J]. Applled Clay Science, 23(1-4): 239-264. doi: 10.1016/S0169-1317(03)00108-X Romero E, Villar M V, Lloret A. 2005. Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays[J]. Engineering Geology, 81(3): 255-268. doi: 10.1016/j.enggeo.2005.06.011 Salo J P, Kukkola T. 1989. Bentonite pellets, an alternative buffer material for spent fuel canister deposition holes[C]//NEA/CEC Workshop"Sealing of Radioactive Waste Repositories". Paris: OECD. Seiphoori A. 2014. Thermo-hydro-mechanical characterisation and modelling of MX-80 granular bentonite[D]. Lausanne, Switzerland: Ecole Polytechnique Fédérale de Lausanne. http://www.researchgate.net/publication/283663026_Thermo-hydro-mechanical_characterisation_and_modelling_of_MX-80_granular_bentonite Seiphoori A, Laloui L, Ferrari A, et al. 2016. Water retention and swelling behaviour of granular bentonites for application in Geosynthetic Clay Liner(GCL)systems[J]. Soils and Foundations, 56(3): 449-459. doi: 10.1016/j.sandf.2016.04.011 Stastka J. 2013. The development of bentonite gap filling for high-level waste disposal[C]//Proceedings of 22nd International Conference Nuclear Energy for New Europe. Bled-Slovenia: [s.n.]. Su Z Y. 2019. The water retention and permeability of granular bentonite material for HLW disposal[D]. Lanzhou: Lanzhou University. Sun A D, Meng D L, Sun W J, et al. 2011. Soil-water characteristic curves of two bentonites[J]. Rock and Soil Mechanics, 32(4): 973-978. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201104003 Tang C S, Li S J, Wang D W, et al. 2019. Experimental simulation of boundary condition effects on bentonite swelling in HLW repositories[J]. Environmental Earth Sciences, 78(5): 135. doi: 10.1007/s12665-019-8132-4 Van Geet M, Volckaert G, Roels S. 2005. The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture[J]. Appled Clay Science, 29(2): 73-87. doi: 10.1016/j.clay.2004.12.007 Wang J. 2019. Progress of geological disposal of high-level radioactive waste in China in the 21st Century[J]. Atomic Energy Science and Technology, 53(10): 2072-2081. Wang Q, Tang A M, Cui Y J, et al. 2013. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture[J]. Soils and Foundations, 53(2): 232-245. doi: 10.1016/j.sandf.2013.02.004 Ye W M, Chen Y G, Chen B, et al. 2010. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite[J]. Engineering Geology, 116(1): 12-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1867f8362c2593df2217c7c8da5d2aa1 Ye W M, Qian L X, Chen B, et al. 2009. Characteristics of micro-structure of densely compacted Gaomiaozi bentonite[J]. Journal of Tongji University(Natural Science), 37(1): 31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjdxxb200901006 Ye W M, Liu Z R, Cui Y J, et al. 2020. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 42(1): 29-36. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb202001004 Ye W M, Zhang Z, Wang Q, et al. 2018. Investigation on the swelling pressure of compacted GMZ01 bentonite pellets/powder mixtures[C]//UNSAT2018. Hongkong: [s.n.]. Zhang H Y, Wang X W, Liu P, et al. 2016. Sealing and healing of compacted bentonite block joints in HLW disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (S2): 3505-3514. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2016S2019.htm Zhang F, Cui Y J, Conil N, Talandier J. 2020. Assessment of swelling pressure determination methods with intact Callovo-Oxfordian claystone[J]. Rock Mechanics and Rock Engineering, 53: 1879-1888. doi: 10.1007/s00603-019-02016-y Zhang Z, Ye W M, Liu Z R, et al. 2018. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials, 185 : 246-255. doi: 10.1016/j.conbuildmat.2018.07.096 Zhang Z, Ye W M, Liu Z R, et al. 2019. Investigation of swelling behaviors of GMZ bentonite pellet mixtures[J]. Japanese Geotechnical Society Special Publication, 7(2): 239-243. doi: 10.3208/jgssp.v07.037 Zhang Z, Ye W M, Liu Z R, et al. 2020. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range[J]. Engineering Geology, 264: 105383. doi: 10.1016/j.enggeo.2019.105383 陈香波. 2018.颗粒膨润土堆积性质及压实性质研究[D].兰州: 兰州大学. http://cdmd.cnki.com.cn/Article/CDMD-10730-1018829337.htm 陈永贵, 贾灵艳, 叶为民, 等. 2017.施工接缝对缓冲材料水-力特性影响研究进展[J].岩土工程学报, 39(1): 138-147. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201701012 刘毅. 2016.高庙子膨润土水化膨胀特性及其微观机理研究[J].工程地质学报, 24(3): 451-458. http://www.gcdz.org/cn/article/id/11992 刘月妙, 蔡美峰, 王驹, 等. 2007.高放废物处置库缓冲材料导热性能研究[J].岩石力学与工程学报, (S2): 3891-3896. 刘樟荣. 2019.高庙子膨润土颗粒混合物的堆积性质与考虑温度影响的水力特性研究[D].上海: 同济大学. 潘自强, 钱七虎. 2009.高放废物地质处置战略研究[M].北京:原子能出版社. 苏振妍. 2019.颗粒膨润土材料持水性能及渗透性能研究[D].兰州: 兰州大学. http://cdmd.cnki.com.cn/Article/CDMD-10730-1019874563.htm 孙德安, 孟德林, 孙文静, 等. 2011.两种膨润土的土-水特征曲线[J].岩土力学, 32(4): 973-978. doi: 10.3969/j.issn.1000-7598.2011.04.003 王驹. 2019.中国高放废物地质处置21世纪进展[J].原子能科学技术, 53(10): 2072-2082. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201910036 叶为民, 钱丽鑫, 陈宝, 等. 2009.高压实高庙子膨润土的微观结构特征[J].同济大学学报(自然科学版), 37(1): 31-35. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb200901006 叶为民, 刘樟荣, 崔玉军, 等. 2020.膨润土膨胀力时程曲线的形态特征及其模拟[J].岩土工程学报, 42(1): 29-36. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb202001004 张虎元, 王学文, 刘平, 等. 2016.缓冲回填材料砌块接缝密封及愈合研究[J].岩石力学与工程学报, 35 (S2): 3605-3614. http://www.cqvip.com/QK/96026X/2016A02/670914204.html -