VERTICAL ZONING CRITERIA AND ENGINEERING GEOLOGICAL CHARACTERISTICS OF SUPER-THICK LAYER GRANITE WEATHERING CRUST IN WUZHOU CITY
-
摘要: 本文选择华南地区巨厚层花岗岩风化壳分布区的梧州市为研究区,旨在建立系统的、科学的、可操作性强的花岗岩风化壳垂直分带划分标准。在野外区域调查、钻探、原位试验、室内试验、综合研究的基础之上,建立了定性与定量复合判定的指标体系,对梧州市花岗岩风化壳进行了垂直分带以及工程地质特征研究。研究结果表明:(1)粒度分析法可以作为花岗岩风化壳垂直分带划分的方法之一,划分结果与原位试验划分结果具有很好的一致性;(2)残积土带、全风化带、强风化带中含量占比最大的土体分别是黏粒土、粉粒土、砂粒土。随着钻孔深度的增加,粒径相对较大的砾粒和砂粒含量占比逐渐增大,粒径相对较小的粉粒和黏粒含量占比逐渐减小。粒径0.05 mm为残积土带、全风化带、强风化带曲线交叉的分界处,该处土体含量百分比近似相等,揭示粒径0.05 mm值是花岗岩风化壳垂直分带划分的重要指标之一;(3)随着钻进深度的增加,圆锥动力触探试验击数与标准贯入试验击数同时增加,修正后的标准贯入击数N和圆锥动力触探击数N63.5呈多项式相关性。本文建立了花岗岩风化壳垂直分带划分标准,给出了花岗岩风化壳土体地基承载力建议值,对花岗岩分布区的重大工程建设与工程地质特征参数的选取具有一定的指导与参照意义。Abstract: Wuzhou City is the distribution area of the granite weathering crust with huge thickness in South China. It is selected as the study area. The study aims to establish a systematic,scientific,and operable standard for the vertical division of granite weathering crust. On the basis of field investigation,drilling,in-situ test,laboratory test,and comprehensive research,an index system of qualitative and quantitative composite judgment is established. The vertical zoning and engineering geological characteristics of granite weathering crust in Wuzhou City are studied. The studies show that: (1) Granularity analysis can be used as one of the methods of vertical zoning of granite weathering crust. The division results are in good agreement with the results of the in-situ test division. (2) Clay,silt and sand soil account for the largest proportion in residual soil zone,completely weathered zone and strongly weathered zone,respectively. The size of soil particles increases with increasing depth. The proportion of gravel and sand particles with relatively large particle sizes gradually increases. The proportion of powder and clay particles with relatively small particle sizes gradually decreases. Particle size 0.05mm is the boundary of curve intersection of residual soil,fully weathering zone and strongly weathering zone. The percentage of soil content at this place is approximately equal,revealing that the value of 0.05mm particle size is one of the important indicators for the vertical division of granite weathering crust. (3) With the increase of the drilling depth,the number of cone dynamic penetration test hits and the number of standard penetration tests increase simultaneously. The corrected standard penetration number N and cone dynamic penetration penetration number N63.5 show a polynomial correlation. In this paper,the standard of vertical zoning of granite weathering crust was established,and the recommended value of the bearing capacity of the granite weathering crust soil is given,which had certain guiding and reference significance for major project construction and selection of engineering geological characteristic parameters in granite distribution area.
-
表 1 典型钻孔粒度分析数据
Table 1. Typical drilling granularity analysis data
钻孔编号 样品编号 砾粒/%
(>2 mm)砂粒/%
(2~0.075 mm)粉粒/%
(0.075~0.005mm)黏粒/%
(<0.005mm)GCK01 T1 4.7 37.6 33.5 24.2 T2 5.7 37.8 32.1 24.4 T3 7.0 32.7 24.7 35.6 T4 8.5 46.6 25.3 19.6 T5 11.9 45.9 26.0 16.2 T6 12.8 55.2 26.9 15.1 GCK13 T1 1.6 14.8 60.8 22.8 T2 3.5 16.6 60.1 19.8 T3 5.7 25.5 52.8 16.0 T4 9.9 40.9 34.5 14.7 T5 12.8 43.2 30.7 13.3 T6 23.6 43.1 22.7 10.6 GCK15 T1 5.6 15.1 44.5 34.8 T2 7.1 22.4 37.9 32.6 T3 9.7 28.7 35.0 26.6 T4 14.7 35.4 26.1 23.8 T5 15.4 39.3 23.8 18.5 T6 17.6 44.0 21.8 16.6 T7 23.7 45.4 18.4 12.5 GCK19 T1 0.1 21.7 52.5 25.7 T2 0.7 22.7 51.4 25.2 T3 1.8 23.1 49.5 25.6 T4 1.1 24.8 48.6 25.5 T5 1.3 28.1 45.7 24.9 T6 3.1 31.0 47.5 18.4 T7 4.0 33.3 45.5 17.2 T8 4.4 35.2 43.9 16.5 T9 8.2 39.9 37.5 14.4 表 2 花岗岩风化壳分带粒度分析表
Table 2. The granularity analysis table of granite weathering crust
分类 砾粒 砂粒 粉粒 黏粒 粒度/mm 10~5 5~2 2~0.5 0.5~0.25 0.25~0.075 0.075~0.05 0.05~0.01 0.01~0.005 <0.005 残积层/% 1.80 3.05 9.31 4.28 7.68 6.00 23.63 15.44 28.83 全风化层/% 2.38 4.90 12.63 8.06 13.62 6.57 21.48 10.97 19.39 强风化层/% 3.52 6.27 18.49 9.16 14.40 6.92 17.79 8.50 14.65 表 3 梧州市花岗岩风化壳垂直分带标准
Table 3. Vertical zoning criteria of granite weathering crust in Wuzhou city
一级指标 定性指标 定量指标 二级指标 野外特征 挖掘、钻进及岩芯特征 原位试验 土工试验 岩体强度试验 三级指标 颜色 结构特征 矿物特征 可挖掘特征 可钻进情况 锤击情况 岩芯完整程度 修正标贯或动探击数/击 粒度分析 内摩擦角/(°) 黏聚力/kPa 单轴抗压强度/MPa 残积土带 褐黄色、黄褐色,无光泽 呈土状,含大量石英颗粒,可取原状土样,具有可塑性 矿物已全部风化成土状,肉眼难见矿物颗粒 镐、锹挖容易 钻进容易 不回弹 土体柱状岩芯,较完整 标贯范围5.43~16.58,平均值12.64。 黏粒≥25%、粒径>0.05 mm含量≥60% ≤18 ≥45 — 全风化带 黄褐色、灰褐色,光泽暗 呈砂砾状,原岩结构破坏,难取原状土样,稍具塑性 长石风化成土状,黑云母、角闪石晶形已消失 镐、锹可挖 钻进较容易 不回弹,手捏易碎 取不出完整岩芯,呈松散砂砾状 标贯范围10.36~24.20,平均值18.40 黏粒15%~25%、粒径>0.05 mm含量45%~60% 18~25 30~45 — 强风化带 黄褐色、灰黑色,擦面有光泽 原岩结构基本破坏,风化不均匀,具有球状风化特征,岩芯呈土夹碎块状,不能取土样 长石、云母风化成次生矿物,局部残留未全风化长石晶体 镐、锹挖较难 上部钻进易,下部钻进难 锤击声哑,局部块状岩芯有较大回弹 难取出完整岩芯,较不完整,局部呈块状 标贯范围30.30~75.46,平均值50.20;动探范围8.04~30.51,平均值16.75 黏粒≤15%、粒径>0.05 mm含量≤45% ≥25 ≤30 天然抗压强度0.061~0.271 MPa,平均值0.191 MPa 中风化带 岩石稍暗,裂面呈黄褐色 裂隙发育,沿裂隙风化强烈,有蚀变特征,石英脉发育,可取岩体块状样 除部分黑云母见黄色浸染,其他矿物基本无变异,用指甲刮不易留下痕迹 — 岩芯钻具,可干钻 锤击声脆,有强回弹 岩芯较完整,呈块状-短柱状 — — — — 干燥抗压强度40.1~90.0 MPa,平均值68.8 MPa;饱和抗压强度36.7~79.1 MPa,平均值62.3 MPa 微风化带 颜色较新鲜 断面新鲜,沿裂隙有风化蚀变现象,可取柱状岩体样 与新鲜岩石差别不大,矿物未风化 — 岩芯钻具,不易干钻 声音清脆,锤击时震手 岩芯完整,呈长柱状 — — — — 干燥抗压强度69.4~141.0 MPa,平均值90.8MP;饱和抗压强度45.3~98.9 MPa,平均75.6 MPa 新鲜岩带 此次钻探未揭露,新鲜花岗岩带,完整,未风化 表 4 标贯击数N和动探击数N63.5实测表
Table 4. The table of standard penetration hits N and dynamic penetration hits N63.5
钻孔编号 深度/m 动探N63.5/击 标贯N/击 GCK19 9.80 11.44 26.60 12.70 14.10 27.64 20.30 22.34 33.36 26.70 24.63 36.25 35.50 30.22 42.28 GCK8 12.45 10.86 18.48 20.30 11.00 23.81 23.70 21.23 38.53 25.00 25.65 41.14 GCK10 4.80 8.86 15.34 14.30 10.35 19.40 15.80 11.02 28.58 19.00 12.88 29.33 27.00 14.45 29.65 35.50 18.64 30.13 40.00 19.43 37.39 55.00 22.23 34.13 表 5 标准贯入试验确定的地基承载力经验公式
Table 5. Empirical formula of foundation bearing capacities determined by standard penetration
序号 公式 适应范围 出处 1 fk=80+20.2·N(N=3~18) 黏性土、粉土 武汉市规划设计院 2 fk=152.6+17.48·N(N=18~22) 黏性土、粉土 武汉市规划设计院 3 fk=72+9.4·N1.2 黏土质砂、粉细砂 铁道部第三勘察设计院 4 fk=-212+222·N0.8 粉土、粉细砂 铁道部第三勘察设计院 5 fk=-803+850·N0.1 中、粗砂 铁道部第三勘察设计院 6 $f_{k}=\frac{N}{0.003\;08 \cdot N+0.015\;04}$ 粉土 纺织工业部设计院 7 fk=105+10·N 细、中砂 纺织工业部设计院 8 fk=387+5.3·N(N=8~37) 老堆积土 冶金部长沙勘察公司 9 fk=12·N(条形基础FS=3) 黏性土、粉土 Terzaghi 10 fk=15·N(独立基础FS=3) Terzaghi 11 fk=8.0·N 日本住宅工团 fk为地基承载力,N为修正后标贯击数 表 6 花岗岩风化壳分带地基承载力建议值
Table 6. Bearing capacity suggested value of granite weathering crust
分带 残积土带 全风化带 强风化带 计算公式 fk=80+20.2·N fk=72+9.4·N1.2 fk=-803+850·N0.1 适应范围 花岗岩残坡积粉土、粉质黏土 花岗岩全风化粉细砂土、砂质黏土、黏土质砂 花岗岩强风化中、粗砂层 标贯N/击 5.43~16.58 10.36~23.40 22.90~50.46 承载力建议
/kPa197~422 227~502 392~507 -
An R, Li C S, Kong L W, et al. 2020. Effects of drilling disturbance and unloading lag on in-situ mechanical characteristics of granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 42(1): 109-116. doi: 10.11779/CJGE202001012 Chen X J. 2019. Experimental study on seismic dilatometer(SDMT) of weathering granite profiles in Xiamen[J]. Journal of Engineering Geology, 27(4): 825-831. doi: 10.13544/j.cnki.jeg.2018-238 Chen X P, Zhou Q J, Cai X Y. 2011. Physical properties and shear strength characteristics of high liquid limit granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 33(6): 901-908. http://manu31.magtech.com.cn/Jwk_ytgcxb/EN/abstract/abstract14028.shtml Chen Z T. 2008. Some thoughts for part special soil at coastal granitic area[J]. Journal of Engineering Geology, 16 (S): 29-32. http://www.gcdz.org/en/article/id/10266 Guo X. 1997. Classification method of granite of granite weathering zone[J]. Geotechnical Engineering Technique, 11(3): 9-11. Irfan T Y. 1996. Mineralogy, fabric properties and classification of weathered granites in Hong Kong[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 29(1): 5-35. doi: 10.1144/GSL.QJEGH.1996.029.P1.02 Jian W B, Hu H R, Luo Y H, et al. 2017. Experimental study on deterioration of granitic residual soil strength in wetting-drying cycles[J]. Journal of Engineering Geology, 25(3): 592-597. doi: 10.13544/j.cnki.jeg.2017.03.003 Li H Z, Guo F, Fu S J, et al. 2016. Adaptation and correction of dynamic penetration rod length[J]. Earth Science, 41(7): 1249-1258. doi: 10.3799/dqkx.2016.103 Li Z Y, Cao X W, Xie Q. 2006. Test study of dynamic characteristics of granitic residual soil for highway subgradea[J]. Rock and Soil Mechanics, 27(12): 2269-2272. http://ytlx.whrsm.ac.cn/EN/Y2006/V27/I12/2269 Liu L. 2003. An approach to engineering behaviors of granite weathering material in coastal areas of South China[J]. Geotechnical Engineering Word, 6(10): 37-38. Lu Y Q, Wei C F, Cai G Q, et al. 2018. Water-holding characteristics of weathered granite soils[J]. Chinese Journal of Geotechnical Engineering, 40 (S2): 96-100. https://www.researchgate.net/publication/330655847_Water-holding_characteristics_of_weathered_granite_soils Price D G. 1993. A suggested method for the classification of rock mass weathering by a ratings system[J]. Quarterly Journal of Engineering Geology, 26(1): 69-76. doi: 10.1144/GSL.QJEG.1993.026.01.06 Qu Y X, Wu H W, Shang Y J. 2000. Study on latitudinal effect on lateritization of eluvial soil on granite and cuase for weak lateritization of the soil in Hong Kong[J]. Journal of Engineering Geology, 8(1): 16-20. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=cjfd&dbname=cjfd2000&filename=GCDZ200001002 Rajaram G, Erbach D C. 1998. Drying stress effect on mechanical behavior of a clay-loam soil[J]. Soil & Tillage Research, 49(1): 147-158. doi: 10.1016/S0167-1987(98)00163-9 Shang Y J, Yue Z Q, Zhao J J, et al. 2004. Comparison of shearing of the completely decomposed granite and analysis of contributing factors[J]. Journal of Engineering Geology, 12(2): 199-207. Tang C S, Wang D Y, Shi B, et al. 2016. Effect of wetting-drying cycles on profile mechanical behavior of soils with different initial conditions[J]. Catena, 139 : 105-116. doi: 10.1016/j.catena.2015.12.015 Tang L S, Sang H T, Song J, et al. 2013. Research on soil particle joint function and brittle-elastoplastic cement damage model of unsaturated granite residual soil[J]. Rock and Soil Mechanics, 34(10): 2877-2888. http://ytlx.whrsm.ac.cn/EN/Y2013/V34/I10/2877 The National Standards Compilation Group of People's Republic of China. 1995. Specifications for engineering classification of rock masses(GB 50218-94) [S]. Beijing: China Planning Press. The National Standards Compilation Group of People's Republic of China. 2014. Specifications for engineering classification of rock masses(GB 50218-2014)[S]. Beijing: China Planning Press. Tu X B, Wang S J, Yue Z Q. 2003. Methods for study of microstructure of weathered granite, Hong Kong[J]. Journal of Engineering Geology, 11(4): 428-434. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2003&filename=GCDZ200304016 Wu H W, Shang Y J, Qu Y X, et al. 1999. Chemical weathering indices, classification, and zoning of weathered granitic rock in Hong Kong[J]. Journal of Engineering Geology, 7(2): 125-134. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=cjfd&dbname=cjfd1999&filename=GCDZ902.004 Wu H. 1994. Engineering geological study on weathering crust on granite in Wuhou city and its vertical zoning[J]. Journal of Engineering Geology, 2(4): 43-52. https://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ404.005.htm Wu N S. 2006. Study on classification of granite residual soils[J]. Rock and Soil Mechanics, 27(12): 2299-2304. http://ytlx.whrsm.ac.cn/EN/Y2006/V27/I12/2299 Xia J W, Wei Y J, Cai C F. 2017. Correlations between characteristic curves of physical properties of weathered granite soils[J]. Acta Pedologica Sinica, 54(3): 581-589. doi: 10.11766/trxb201606110214 Yu J J, Chen D X, Wang H, et al. 2019. Analysis of the shear strength of granite residual soil and slope stability under wetting-drying cycles[J]. Journal of Xiamen University(Natural Science), 58(4): 614-620. https://en.cnki.com.cn/Article_en/CJFDTotal-XDZK201904026.htm Zhang S, Tang H M. 2013. Experimental study of disintegration mechanism for unsaturated granite residual soil[J]. Rock and Soil Mechanics, 4(6): 1668-1674. https://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201306023.htm Zhang Y B, Yin M Y, Chen G, et al. 1997. A discussion on assessment method for foundation loading capacity of shallow residual soil on granite[J]. Journal of Engineering Geology, 5(3): 251-256. http://www.gcdz.org/en/article/id/9746 Zhou C Y, Jing X D, Liu Z. 2019. Disintegration characteristics and modification of weathered soil in red beds in Southern China[J]. Journal of Engineering Geology, 27(6): 1253-1261. doi: 10.13544/j.cnki.jeg.2018-288 安然, 黎澄生, 孔令伟, 等. 2020. 花岗岩残积土原位力学特性的钻探扰动与卸荷滞时效应[J]. 岩土工程学报, 42(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001018.htm 陈晓坚. 2019. 厦门花岗岩风化层的地震扁铲侧胀(SDMT)试验研究[J]. 工程地质学报, 27(4): 825-831. doi: 10.13544/j.cnki.jeg.2018-238 陈晓平, 周秋娟, 蔡晓英. 2011. 高液限花岗岩残积土的物理特性和剪切特性[J]. 岩土工程学报, 33(6): 901-908. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106015.htm 陈追田. 2008. 沿海花岗岩地区某些特殊性土的认识[J]. 工程地质学报, 16(增刊): 29-32. http://www.gcdz.org/article/id/10266 郭欣. 1997. 花岗岩风化带的现场确定及定量划分[J]. 岩土工程技术, 11(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ199703002.htm 简文彬, 胡海瑞, 罗阳华, 等. 2017. 干湿循环下花岗岩残积土强度衰减试验研究[J]. 工程地质学报, 25(3): 592-597. doi: 10.13544/j.cnki.jeg.2017.03.003 李会中, 郭飞, 傅少君, 等. 2016. 动力触探杆长适应性及其修正试验[J]. 地球科学, 41(7): 1249-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201607015.htm 李志勇, 曹新文, 谢强. 2006. 全风化花岗岩的路用动态特性研究[J]. 岩土力学, 27(12): 2269-2272. doi: 10.3969/j.issn.1000-7598.2006.12.035 刘靓. 2003. 华南沿海花岗岩风化物工程特性探讨[J]. 岩土工程界, 6(10): 37-38. doi: 10.3969/j.issn.1674-7801.2003.10.033 卢有谦, 韦昌富, 蔡国庆, 等. 2018. 风化花岗岩土的持水特性研究[J]. 岩土工程学报, 40(增刊2): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2022.htm 曲永新, 吴宏伟, 尚彦军. 2000. 华南花岗岩残积土红土化程度的地带性与香港该类土不发育的原因[J]. 工程地质学报, 8(1): 16-20. doi: 10.3969/j.issn.1004-9665.2000.01.003 尚彦军, 岳中琦, 赵建军, 等. 2004. 全风化花岗岩抗剪强度试验结果对比及影响因素分析[J]. 工程地质学报, 12(2): 199-207. doi: 10.3969/j.issn.1004-9665.2004.02.015 汤连生, 桑海涛, 宋晶, 等. 2013. 非饱和花岗岩残积土粒间联结作用与脆弹塑性胶结损伤模型研究[J]. 岩土力学, 34(10): 2877-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310020.htm 涂新斌, 王思敬, 岳中琦. 2003. 香港风化花岗岩细观结构研究方法[J]. 工程地质学报, 11(4): 428-434. doi: 10.3969/j.issn.1004-9665.2003.04.017 吴恒. 1994. 梧州市花岗岩风化壳工程地质研究及垂直分带[J]. 工程地质学报, 2(4): 43-52. http://www.gcdz.org/article/id/9921 吴宏伟, 尚彦军, 曲永新, 等. 1999. 香港花岗岩风化分级化学指标体系与风化壳分带[J]. 工程地质学报, 7(2): 125-134. doi: 10.3969/j.issn.1004-9665.1999.02.005 吴能森. 2006. 花岗岩残积土的分类研究[J]. 岩土力学, 27(12): 2299-2304. doi: 10.3969/j.issn.1000-7598.2006.12.041 夏金文, 魏玉杰, 蔡崇法. 2017. 花岗岩风化土物理特征曲线间的相关性研究[J]. 土壤学报, 54(3): 581-589. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201703004.htm 于佳静, 陈东霞, 王晖, 等. 2019. 干湿循环下花岗岩残积土抗剪强度及边坡稳定性分析[J]. 厦门大学报(自然科学版), 58(4): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201904026.htm 张抒, 唐辉明. 2013. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学, 34(6): 1668-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306023.htm 张永波, 殷密英, 陈戈, 等. 1997. 花岗岩残积土浅层地基承载力评价方法探讨[J]. 工程地质学报, 5(3): 251-256. http://www.gcdz.org/article/id/9746 中华人民共和国国家标准编写组. 1995. 工程岩体分级标准(GB 50218-94)[S]. 北京: 中国计划出版社. 中华人民共和国国家标准编写组. 2014. 工程岩体分级标准(GB 50218-2014)[S]. 北京: 中国计划出版社. 周翠英, 景兴达, 刘镇. 2019. 华南红层风化土崩解特性及其改性研究[J]. 工程地质学报, 27(6): 1253-1261. doi: 10.13544/j.cnki.jeg.2018-288 -