崩解性砂软岩改良弱膨胀土性状实验研究

李国维 巩齐齐 李涛 吴建涛 陈伟 曹雪山

李国维, 巩齐齐, 李涛, 等. 2021. 崩解性砂软岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 29(1): 34-43. doi: 10.13544/j.cnki.jeg.2020-168
引用本文: 李国维, 巩齐齐, 李涛, 等. 2021. 崩解性砂软岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 29(1): 34-43. doi: 10.13544/j.cnki.jeg.2020-168
Li Guowei, Gong Qiqi, Li Tao, et al. 2021. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 29(1): 34-43. doi: 10.13544/j.cnki.jeg.2020-168
Citation: Li Guowei, Gong Qiqi, Li Tao, et al. 2021. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 29(1): 34-43. doi: 10.13544/j.cnki.jeg.2020-168

崩解性砂软岩改良弱膨胀土性状实验研究

doi: 10.13544/j.cnki.jeg.2020-168
基金项目: 

国家自然科学基金资助项目 41472240

中央高校基本科研业务费专项基金资助项目 2015B25514

详细信息
    作者简介:

    李国维(1964-),男,博士,研究员,博士生导师,主要从事软土地基变形、高边坡稳定性等方面的教学与研究工作. E-mail: lgwnj@163.com

    通讯作者:

    吴建涛(1981-),男,博士,副教授,硕士生导师,主要从事道路沥青材料耐久性及再生、生物质沥青材料研发和特殊路基及边坡处理等方面的研究. E-mail: 33528418@qq.com

  • 中图分类号: P642.13

EXPERIMENTAL STUDY ON PROPERTIES OF WEAK EXPANSIVE SOIL IMPROVED BY DISINTEGRATED SANDSTONE

Funds: 

the National Natural Science Foundation of China 41472240

the Fundamental Research Funds for the Central Universities 2015B25514

  • 摘要: 引江济淮河(航)道工程引江济巢段和江淮沟通段地层连续分布弱膨胀土和具有崩解性的砂软岩,为资源化利用河道开挖弃渣开发非膨胀土来源,实验研究利用崩解性软岩改良弱膨胀土的可行性。研究表明:崩解性砂软岩易粉碎、无膨胀性、天然含水率低,具备作为改性材料的条件;弱膨胀土掺入崩解性砂岩后其膨胀率、膨胀力、最优含水率与掺入量负相关,最大干密度、渗透系数与掺入量正相关;弱膨胀土掺入崩解性砂岩后其内摩擦角随掺量呈反S型曲线规律发展,黏聚力随掺量增加近似呈二次曲线规律衰减,掺量高于30%时,改良土的抗剪强度可能低于天然弱膨胀土;在砂岩掺量及粒径范围相同情况下,砂岩粗颗粒含量越高,改良土的黏聚力越高和摩擦角越低;砂岩改良土在干湿循环条件下的强度稳定性得到改善,且水化砂岩的改良效果优于机碎砂岩。以弱膨胀土改良后强度不损失为标准,确定砂岩合理掺量为30%,并须合理控制砂岩改良土施工过程中机碎砂岩中粗粒组的含量。
  • 图  1  引江济淮工程沿线地层分布情况

    Figure  1.  Distribution of strata along the Yangtze River to Huaihe River project

    图  2  未崩解(a),遇水崩解(b)

    Figure  2.  No disintegrating(a), Water disintegrates(b)

    图  3  施工级配曲线与参考级配曲线

    Figure  3.  PSD of construction and reference

    图  4  崩解性砂岩组的颗粒级配曲线

    Figure  4.  PSD of disintegrated sandstone

    图  5  掺量与改良土的最优含水率和最大干密度的关系图

    Figure  5.  The relations of dosage and the optimum moisture content, maximum dry density of improved soil

    图  6  掺量与自由膨胀率和膨胀力的关系图

    Figure  6.  The relations of dosage with free expansion rate, expansion force

    图  7  掺量与无荷膨胀率和有荷膨胀率的关系图

    Figure  7.  The relation graph of dosage with non-loaded swelling ratio and the loaded swelling ratio

    图  8  掺量与渗透系数的关系曲线图

    Figure  8.  The relations graph of dosage and impermeability coefficient

    图  9  砂岩掺量与抗剪强度参数的关系曲线

    Figure  9.  The relations graph of dosage and shear strength parameters

    图  10  砂岩掺量与抗剪强度的关系曲线

    Figure  10.  The relations graph of dosage and shear strength

    图  11  不同级配的砂岩改良土的抗剪强度参数

    Figure  11.  The shear strength parameters of disintegrated sandstone improved soil of different PSD

    图  12  改良土强度指标与掺入砂岩的粒组含量的关系

    Figure  12.  The relations graph of the shear strength parameters and the content of grain group mixed with disintegrated sandstone

    图  13  抗剪强度指标与干湿循环次数关系

    Figure  13.  The relations graph of the shear strength parameters and wet-dry cycle

    图  14  抗剪强度指标衰减率与干湿循环次数关系

    Figure  14.  The relations graph of decay rate of the shear strength parameters and wet-dry cycle

    表  1  物理性指标

    Table  1.   Physical indicators

    土样 自由膨胀率/% 最优含水率/% 最大干密度/g·cm-3 液限/% 塑限/% 塑性指数
    膨胀土 62 22.8 1.59 52.4 23.6 28.8
    砂岩 24 16.8 1.78 / / /
    下载: 导出CSV

    表  2  矿物成分X射线衍射实验结果(质量分数)

    Table  2.   Results of X-ray mineral composition(mass fraction)

    土样 蒙脱石/% 蛭石/% 水云母/% 高岭石/% 绿泥石/% 石英/% 长石/% 方解石/%
    膨胀土 27 4 11 4 2 14 8 30
    砂岩 12 6 6 5 4 45 22 0
    下载: 导出CSV

    表  3  级配缩尺处理

    Table  3.   Scale processing of particle size distribution(PSD)

    改性土施工级配 掺入砂岩参考级配
    粒径/mm 小于某粒径的颗粒百分含量/% 粒径/mm 小于某粒径的颗粒百分含量/%
    60 100 20 100
    40 96 13.3 96
    20 82 6.7 82
    10 70 3.3 70
    5 50 1.7 50
    2 23 0.7 23
    1 16 0.3 16
    0.5 7 0.2 7
    0.25 5 0.08 5
    0.1 2 0.03 2
    0.075 0 0.025 0
    下载: 导出CSV

    表  4  实验级配的级配组合

    Table  4.   PSD combination of experimental PSD

    粒径/mm 小于某粒径的颗粒百分含量/%
    级配Ⅰ 级配Ⅱ 级配Ⅲ 级配Ⅳ 级配Ⅴ
    20 100 100 100 100 100
    10 45 65 85 92 98
    5 15 35 60 80 92
    2 5 10 30 55 80
    1 1 3 16 30 60
    0.5 0 1 8 18 36
    0.25 0 0 4 10 25
    0.1 0 0 2 6 15
    0.075 0 0 0 4 12
    下载: 导出CSV

    表  5  改良土的粒组成分

    Table  5.   Particle composition of improved soil

    土样 粒组含量/% 土类
    >2 mm 0.075~2 mm 0.005~0.075 mm <0.005 mm
    级配Ⅰ砂岩改良土 28.5 6.3 43.2 22.0 细粒土
    级配Ⅱ砂岩改良土 27.0 7.8 43.2 22.0
    级配Ⅲ砂岩改良土 21.0 13.8 43.2 22.0
    级配Ⅳ砂岩改良土 13.5 20.1 44.4 22.0
    级配Ⅴ砂岩改良土 6.0 25.2 46.8 22.0
    下载: 导出CSV

    表  6  改良膨胀土的击实试验结果

    Table  6.   Compaction test results of improved expansive soil

    崩解性砂岩掺量/% 最大干密度/g·cm-3 最优含水率/%
    0 1.59 22.8
    10 1.61 22.0
    20 1.61 20.9
    30 1.63 19.5
    40 1.64 19.0
    50 1.66 18.7
    60 1.67 18.3
    下载: 导出CSV

    表  7  砂岩改良土的膨胀性指标

    Table  7.   The expansibility of disintegrated sandstone improving soils

    掺量/% 自由膨胀率/% 无荷膨胀率/% 50 kPa膨胀率/% 膨胀力/kPa
    0 62 13.35 0.32 50.96
    10 58 12.75 0.25 41.21
    20 54 11.90 0.19 31.09
    30 47 10.70 0.11 22.18
    40 44 10.00 0.06 18.54
    50 42 9.14 0.04 15.33
    60 39 8.61 0.03 13.96
    下载: 导出CSV

    表  8  崩解性砂岩改良膨胀土的渗透系数

    Table  8.   The impermeability coefficient of disintegrated sandstone improving expansive soils

    砂岩掺量/% 0 10 20 30 40 50 60
    渗透系数/cm·s-1 7.70×10-8 8.92×10-7 1.42×10-7 3.15×10-7 4.47×10-7 1.01×10-6 6.94×10-6
    下载: 导出CSV

    表  9  不同崩解性砂岩掺量下改良土抗剪强度

    Table  9.   Shear strength of disintegrated sandstone with different dosage of disintegrated sandstone

    砂岩掺量/% 抗剪强度/kPa 强度指标
    σ=100 σ=200 σ=300 σ=400 c/kPa φ/(°)
    0 66.0 90.6 114.1 138.1 42.0 13.5
    10 66.8 87.2 110.8 129.8 41.3 13.4
    20 65.0 88.0 115.1 141.9 38.0 14.5
    30 58.0 87.2 115.2 133.3 34.9 14.3
    40 48.0 69.3 92.0 120.0 26.6 13.4
    50 42.0 62.7 90.4 120.0 14.3 14.7
    60 46.6 72.6 101.1 143.5 11.0 17.7
    下载: 导出CSV

    表  10  不同级配砂岩改良土的抗剪强度参数

    Table  10.   The shear strength parameters of disintegrated sandstone improved soil of different PSD

    砂岩改良土中砂岩级配 黏聚力/kPa 内摩擦角/(°)
    级配Ⅰ砂岩改良土 49.71 10.59
    级配Ⅱ砂岩改良土 50.14 11.82
    级配Ⅲ砂岩改良土 52.51 12.40
    级配Ⅳ砂岩改良土 42.73 13.24
    级配Ⅴ砂岩改良土 37.25 13.03
    下载: 导出CSV

    表  11  不同干湿循环次数下试样的抗剪强度

    Table  11.   The shear strength under different wet-dry cycle

    土样 循环/次 抗剪强度/kPa 强度指标
    σ=50 σ=100 σ=150 σ=200 c/kPa φ/(°)
    纯弱膨胀土 0 54.3 66.5 76.6 84.7 45.2 11.5
    1 32.5 42.5 52.2 58.9 24.3 10.1
    3 25.6 34.0 43.4 50.2 17.5 9.4
    5 24.2 33.5 41.6 50.1 15.9 9.7
    机碎砂岩改良土 0 73.0 95.2 112.4 129.9 55.7 20.6
    1 48.3 64.9 83.2 101.3 30.1 19.5
    3 40.2 55.1 71.1 84.2 26.2 16.5
    5 35.2 51.2 65.5 77.8 21.9 15.9
    水化砂岩改良土 0 57.4 70.6 82.8 96.0 44.7 14.4
    1 40.6 54.6 68.0 84.6 25.6 16.2
    3 37.5 53.2 68.1 80.7 23.8 16.1
    5 34.7 53.0 68.0 80.1 21.2 16.8
    下载: 导出CSV
  • Cheng Y, Shi M L, Zhou Z M. 2008. Aggregation effect of slaked lime on treated expansive soils[J]. Rock and Soil Mechanics, 29(8): 2209-2214.
    Du J, Zhou D. 2012. Experimental study on improvement of expansive soil with microbe[J]. Water Resources and Hydropower Engineering, 43(7): 103-105, 87.
    Gu J X, Yang J Y, Qian H L, et al. 2018. Influence of cation on expansive soil swelling in Nanning[J]. Journal of Engineering Geology, 26(S1): 646-651.
    Guo W L, Zhu J G, Wen Y F. 2016. Unified description for four grading scale method for coarse aggregate[J]. Chinese Journal of Geotechnical Engineering, 38(8): 1473-1480.
    Leng T, Tang C S Xu D, et al. 2018. Advance on the engineering geological characteristics of expansive soil[J]. Journal of Engineering Geology, 26(1): 112-128.
    Li G W, Li Y S, Yuan J P, et al. 2018. Research on electrical conductivity of expansive soil at Yangtze-to-Huai water diversion experimental project[J]. Journal of Engineering Geology, 26(6): 1666-1673.
    Li G W, Shi S, Hou Y Z, et al. 2018. Experimental study of development technology of non-expansive soil in Yangtze River to Huaihe River water diversion experimental project[J]. Rock and Soil Mechanics, 39(S2): 302-314.
    Ran L Z, Song X D, Tang C S. 2011. Laboratorial investigation on tensile strength of expansive soil during drying[J]. Journal of Engineering Geology, 19(4): 620-625.
    Tan S L, HuangL, Li Y H. 2009. Engineering properties of expansive soil mixed with lime at Yichang-Jingmen expressway[J]. Journal of Engineering Geology, 17(3): 421-425.
    The Professional Standards Compilation Group of People's Republic of China. 1995. Geotechnical test procedures(SL237—1999)[S].Beijing: China Water & Power Press.
    Wu J T, Yao K X, Yang S, et al. 2017. Cement amount of modified expansive soils in water diversion project from Yangtze River to Huihe River[J]. Chinese Journal of Geotechnical Engineering, 39(S1): 232-235.
    Yang H P, He Y X, Jiang W W. 2007. The current situation of microbial influence on geotechnical engineering and the thinking of improving expansive soil with microbial technology[J]. Journal of China & Foreign Highway, 27(4): 228-231.
    Yang J, Li X C, Zhang G D, et al. 2013. Experimental properties of expansive soil improved by Mixing weathered sand[J]. Journal of Yangtze River Scientific Research Institut, 30(4): 67-72.
    Yang J, Li X C, Zhang G D, et al. 2014. Improving mechanism of expansive soil by weathered sand and slope stability analysis[J]. Journal of Jiangsu University(Natural Science Edition), 35(5): 600-604.
    Yang J, Tong L, Xu W, et al. 2015. Laboratory research on effect of freeze-thaw cycles to shear strength of weathered sand improved with expansive soil[J]. Journal of Engineering Geology, 23(1): 65-71.
    Yang J, Tong L, Zhang G D, et al. 2013. Research on shear strength index of expansive soil modified by weathered sand[J]. Research of Soil and Water Conservation, 20(2): 276-281.
    Yong R N, Boonsinsuk P, Wong G. 1986. Formulation of backfill material for a nuclear fuel waste disposal vau[J]. Canadian Geotechnical Journal, 23(2): 216-228. doi: 10.1139/t86-031
    Zhang C C, Liu S H, Zhang X F. 2012. Age effects on EDTA titrationin detecting cement content for treatment of expansive soil[J]. South-to-North Water Transfers and Water Science & Technology, 10(5): 76-79.
    Zhang X P, Shi B, Lu X C. 2003. Experimental study on the micro-pore structure of expansive soil improved by lime[J]. Chinese Journal of Geotechnical Engineering, 25(6): 761-763.
    Zhao H, Chu C F, Guo K L, et al. 2017. Experimental analysis of the basic engineering properties of expansive soils improved by iron tailings sand[J]. Journal of Civil, Architectural & Environmental Engineering, 39(6): 98-104.
    程钰, 石名磊, 周正明. 2008. 消石灰对膨胀土团粒化作用的研究[J]. 岩土力学, 29(8): 2209-2214. doi: 10.3969/j.issn.1000-7598.2008.08.035
    杜静, 周东. 2012. 微生物改良膨胀土的试验研究[J]. 水利水电技术, 43 (7): 103-105, 87. doi: 10.3969/j.issn.1000-0860.2012.07.029
    谷建晓, 杨钧岩, 钱慧良, 等. 2018. 阳离子对南宁膨胀土膨胀的影响[J]. 工程地质学报, 26(S1): 646-651. doi: 10.13544/j.cnki.jeg.2018194
    郭万里, 朱俊高, 温彦锋. 2016. 对粗粒料4种级配缩尺方法的统一解释[J]. 岩土工程学报, 38(8): 1473-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608015.htm
    冷挺, 唐朝生, 徐丹, 等. 2018. 膨胀土工程地质特性研究进展[J]. 工程地质学报, 26(1): 112-128. doi: 10.13544/j.cnki.jeg.2018.01.013
    李国维, 李亚帅, 袁俊平, 等. 2018a. 引江济淮试验工程膨胀土电导率特征实验研究[J]. 工程地质学报, 26(6): 1666-1673. doi: 10.13544/j.cnki.jeg.2017-510
    李国维, 施赛杰, 侯宇宙, 等. 2018b. 引江济淮试验工程非膨胀土开发技术实验研究[J]. 岩土力学, 39(S2): 302-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2042.htm
    冉龙洲, 宋翔东, 唐朝生. 2011. 干燥过程中膨胀土抗拉强度特性研究[J]. 工程地质学报, 19(4): 620-625. doi: 10.3969/j.issn.1004-9665.2011.04.028
    谭松林, 黄玲, 李玉花. 2009. 加石灰改性后膨胀土的工程性质研究[J]. 工程地质学报, 17(3): 421-425. doi: 10.3969/j.issn.1004-9665.2009.03.023
    吴建涛, 姚开想, 杨帅, 等. 2017. 引江济淮工程膨胀土水泥改性剂量研究[J]. 岩土工程学报, 39(增刊1): 232-235. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1047.htm
    杨和平, 贺迎喜, 江唯伟. 2007. 微生物影响岩土工程的现状及用微生物技术改良膨胀土的思考[J]. 中外公路, 27(4): 228-231. doi: 10.3969/j.issn.1671-2579.2007.04.063
    杨俊, 黎新春, 张国栋, 等. 2013a. 风化砂改良膨胀土膨胀特性试验研究[J]. 长江科学院院报, 30(4): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304015.htm
    杨俊, 童磊, 张国栋, 等. 2013b. 风化砂改良膨胀土对抗剪强度指标的影响研究[J]. 水土保持研究, 20(2): 276-281. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201302053.htm
    杨俊, 黎新春, 张国栋, 等. 2014. 风化砂改良膨胀土机理及边坡稳定性分析[J]. 江苏大学学报(自然科学版), 35(5): 600-604. doi: 10.3969/j.issn.1671-7775.2014.05.019
    杨俊, 童磊, 许威, 等. 2015. 冻融循环影响风化砂改良膨胀土抗剪强度室内试验研究[J]. 工程地质学报, 23(1): 65-71. doi: 10.13544/j.cnki.jeg.2015.01.010
    张晨辰, 刘斯宏, 张学峰. 2012. 膨胀土水泥改性掺灰量测定的龄期效应研究[J]. 南水北调与水利科技, 10(5): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201205019.htm
    张小平, 施斌, 陆现彩. 2003. 石灰改良膨胀土微孔结构试验研究[J]. 岩土工程学报, 25(6): 761-763. doi: 10.3321/j.issn:1000-4548.2003.06.026
    赵辉, 储诚富, 郭坤龙, 等. 2017. 铁尾矿砂改良膨胀土基本工程性质试验研究[J]. 土木建筑与环境工程, 39(6): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201706013.htm
    中华人民共和国行业标准编写组. 1999. 土工试验规程(SL 237—1999)[S]. 北京: 中国水利水电出版社.
  • 加载中
图(14) / 表(11)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  96
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-06-16
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回