基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型

张洁 阳帅 谭泽颖 李旭

张洁, 阳帅, 谭泽颖, 等. 2022. 基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型[J]. 工程地质学报, 30(2): 301-308. doi: 10.13544/j.cnki.jeg.2020-179
引用本文: 张洁, 阳帅, 谭泽颖, 等. 2022. 基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型[J]. 工程地质学报, 30(2): 301-308. doi: 10.13544/j.cnki.jeg.2020-179
Zhang Jie, Yang Shuai, Tan Zeying, et al. 2022. Probabilistic prediction of soil water characteristic curve of unsaturated sand based on particle size distribution[J]. Journal of Engineering Geology, 30(2): 301-308. doi: 10.13544/j.cnki.jeg.2020-179
Citation: Zhang Jie, Yang Shuai, Tan Zeying, et al. 2022. Probabilistic prediction of soil water characteristic curve of unsaturated sand based on particle size distribution[J]. Journal of Engineering Geology, 30(2): 301-308. doi: 10.13544/j.cnki.jeg.2020-179

基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型

doi: 10.13544/j.cnki.jeg.2020-179
基金项目: 

国家重点研发计划项目 2021YFB2600500

上海市教育发展基金会和上海市教育委员会曙光计划项目 19SG19

详细信息
    作者简介:

    张洁(1980-),男,博士,教授,博士生导师,主要从事岩土和地下工程灾害和风险分析及控制研究. E-mail: cezhangjie@tongji.edu.cn

    通讯作者:

    李旭(1980-),男,博士,教授,博士生导师,主要从事非饱和土力学、岩土渗流分析方面研究. E-mail: cexuli2012@gmail.com

  • 中图分类号: TU431

PROBABILISTIC PREDICTION OF SOIL WATER CHARACTERISTIC CURVE OF UNSATURATED SAND BASED ON PARTICLE SIZE DISTRIBU-TION

Funds: 

National Key R&D Program 2021YFB2600500

Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission 19SG19

  • 摘要: 土水特征曲线定义了非饱和土的基质吸力和含水量之间的关系,与非饱和土的渗流和强度等特征有密切关系。本文通过对100组砂土的粒径分布曲线和土水特征曲线进行分析,结合常用的VG模型提出了基于粒径分布曲线的非饱和砂土土水特征曲线概率预测方法,并基于另外30组数据对提出的模型进行了验证。研究表明,基于粒径分布曲线无法唯一确定土体的土水特征曲线。与已有方法相比,提出的方法不但可以预测土水特征曲线的最可能位置,还可以预测土水特征曲线的变异性范围,由此可考虑基于粒径分布曲线对土水特征曲线进行估算时存在的模型误差。
  • 图  1  土水特征曲线拟合图

    Figure  1.  Soil and water characteristic curve fitting diagram

    图  2  土水特征曲线

    a. 实测图;b. 拟合图

    Figure  2.  Soil and water characteristic curve

    图  3  土样粒径分布曲线

    Figure  3.  Particle size distribution curve

    图  4  预测值与实际值对比

    a. ln a;b. ln n

    Figure  4.  Comparison of predicted and actual values

    图  5  模型参数残差直方图

    a. ln a;b. ln n

    Figure  5.  Histogram of model parameter residual

    图  6  ln a-ln n残差散点图

    Figure  6.  Scatter plot of residuals for ln a and ln n

    图  7  土样粒径分布曲线

    Figure  7.  Particle size distribution curves of soils

    图  8  土样实测土水特征曲线

    Figure  8.  Laboratory soil and water characteristic curves of soils

    图  9  验证土样土水特征曲线及预测曲线

    a. 土样1;b. 土样2;c. 土样3;d. 土样4

    Figure  9.  Soil and water characteristic curve and prediction curve of tested soil

    图  10  土水特征曲线置信区间

    Figure  10.  Confidence interval of soil and water characteristic curve

    表  1  VG模型参数相关性分析

    Table  1.   Correlation analysis of VG model parameters

    相关系数 ln d10 ln d30 ln d60 ln e ln Cc ln Cu
    a 0.437 0.542 0.518 -0.109 0.101 -0.215
    ln a 0.493 0.752 0.695 -0.321 0.153 -0.128
    n 0.201 -0.087 -0.206 0.083 -0.321 0.390
    ln n 0.196 -0.141 -0.308 0.104 -0.392 -0.456
    下载: 导出CSV
  • Arya L M, Paris J F. 1982. Comments on a physicoempirical model to predict the soil-moisture characteristic from particle-size distribution and bulk-density data-reply[J]. Soil Science Society of America Journal, 46 (6): 1348-1982.
    Bao C G. 2004. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 26 (1): 1-15.
    Cosby B J, Hornberger G M, Clapp R B, et al. 1984. A statistical exploration of the relationships of soil-moisture characteristics to the physical-properties of soils[J]. Water Resources Research, 20 (6): 682-690. doi: 10.1029/WR020i006p00682
    Fredlund D G, Xing A. 1994. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 31 : 1026. doi: 10.1139/t94-120
    Gao Y, Sun D A. 2017. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 39 (10): 1884-1891.
    Gardner W R, Fireman M. 1958. laboratory studies of evaporation from soil columns in the presence of a water table[J]. Soil Science, 85 (5): 244-249. doi: 10.1097/00010694-195805000-00002
    Hou S M, Li Y R, Liu G L. 2007. A new method of detecting nonlinear for time series based on KS test[J]. Journal of Electronics & Information Technology, 29 (4): 808-810.
    Hu R, Chen Y F, Zhou C B. 2013. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 35 (8): 1451-1462.
    Leij F J. 1996. UNSODA unsaturated soil hydraulic database[R]. Cincinnati: U. S. Environmental Protection Agency.
    Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27 (5): 1019-1026.
    Li X, Li J H, Zhang L M. 2014. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers and Geotechnics, 57 : 85-96. doi: 10.1016/j.compgeo.2014.01.004
    Li Z Q, Li T, Hu R L, et al. 2007. Methods for testing and predicting of SWCC in unsaturated soil mechanics[J]. Journal of Engineering Geology, 15 (5): 700-707.
    Mohammadi M H, Vanclooster M. 2011. Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model[J]. Vadose Zone Journal, 10 (2): 594-602. doi: 10.2136/vzj2010.0080
    Mukaka M M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research[J]. Malawi Medical Journal: the Journal of Medical Association of Malawi, 24 (3): 69-71.
    Pan D L, Ni W K, Yuan K Z, et al. 2020. Determination of soil-water characteristic curve variables based on VG model[J]. Journal of Engineering Geology, 28 (1): 69-76.
    Qi G Q, Huang R Q. 2004. An universal mathematical model of soil-water characteristic curve[J]. Journal of Engineering Geology, 12 (2): 182-186.
    Saxton K E, Rawls W J, Romberger J S, et al. 1986. Estimating generalized soil-water characteristics from texture[J]. Soil Science Society of America Journal, 50 (4): 1031-1036. doi: 10.2136/sssaj1986.03615995005000040039x
    Shi Z M, Liu W R, Peng M, et al. 2018. Experimental study on soil-water characteristic curve of reticulate red clay and its application in slopestability evaluation[J]. Journal of Engineering Geology, 26 (1): 164-171.
    Tang L S, Yan B, Li Z S, et al. 2008. The experimental research on the soil-water characteristic curve of the granite residual soil[J]. Hydrogeology & Engineering Geology, (4): 62-65, 79.
    Tao G L, Kong L W. 2018. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 40 (S1): 34-38.
    The National Standards Compilation Group of People's Republic of China. 2009. Code for Geotechnical Engineering Investigation(GB50021-2001)[S]. Beijing: China Architecture & Building Press.
    van Genuchten M T V. 1980. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    Vanapalli S K, Fredlund D G, Pufahl D E. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33 : 379-392. doi: 10.1139/t96-060
    Wang J, Wu X M, Wang A F. 2014. The application of pearson correlation coefficient algorithmin in searching for the users with abnormal watt-hour meters[J]. Power Demand Side Management, (2): 57-59.
    Zhang X D, Zhao C G, Liu Y, et al. 2010. Simulation and hysteresis model for soil-water characteristic curves[J]. Journal of Engineering Geology, 18 (6): 920-925.
    Zhao J S, Zhuang G M, Wang Z G. 2010. Introduction to the maximum likelihood estimation method[J]. Journal of Changchun University of Science and Technology, 5 (6): 53-54.
    包承纲. 2004. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 26 (1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401001.htm
    高游, 孙德安. 2017. 单峰和双峰土水特征曲线基本参数的确定[J]. 岩土工程学报, 39 (10): 1884-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710023.htm
    侯澍旻, 李友荣, 刘光临. 2007. 一种基于KS检验的时间序列非线性检验方法[J]. 电子与信息学报, 29 (4): 808-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200704010.htm
    胡冉, 陈益峰, 周创兵. 2013. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 35 (8): 1451-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm
    李同录, 范江文, 习羽, 等. 2019. 击实黄土孔隙结构对土水特征的影响分析[J]. 工程地质学报, 27 (5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045
    李志清, 李涛, 胡瑞林, 等. 2007. 非饱和土土水特征曲线(SWCC)测试与预测[J]. 工程地质学报, 15 (5): 700-707. http://www.gcdz.org/article/id/8925
    潘登丽, 倪万魁, 苑康泽, 等. 2020. 基于VG模型确定土水特征曲线基本参数[J]. 工程地质学报, 28 (1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156
    石振明, 刘巍然, 彭铭, 等. 2018. 网纹红土土水特征曲线试验研究及其在边坡稳定性评价中的应用[J]. 工程地质学报, 26 (1): 164-171. doi: 10.13544/j.cnki.jeg.2018.01.018
    汤连生, 颜波, 李振嵩, 等. 2008. 花岗岩残积土水土特征曲线的试验研究[J]. 水文地质工程地质, (4): 62-65, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200804019.htm
    陶高粱, 孔令伟. 2018. 不同初始孔隙比土体进气值及土-水特征曲线预测[J]. 岩土工程学报, 40 (S1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1007.htm
    王涓, 吴旭鸣, 王爱凤. 2014. 应用皮尔逊相关系数算法查找异常电能表用户[J]. 电力需求侧管理, (2): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXQ201402015.htm
    张雪东, 赵成刚, 刘艳, 等. 2010. 土水特征曲线(SWCC)的滞回特性模拟研究[J]. 工程地质学报, 18 (6): 920-925. http://www.gcdz.org/article/id/8746
    赵军圣, 庄光明, 王增桂. 2010. 极大似然估计方法介绍[J]. 长春理工大学学报, 5 (6): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CCLZ201006027.htm
    中华人民共和国国家标准编写组. 2009. 岩土工程勘察规范(GB50021-2001)[S]. 北京: 中国建筑工业出版社
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  81
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-15
  • 修回日期:  2020-07-21
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回