PROBABILISTIC PREDICTION OF SOIL WATER CHARACTERISTIC CURVE OF UNSATURATED SAND BASED ON PARTICLE SIZE DISTRIBU-TION
-
摘要: 土水特征曲线定义了非饱和土的基质吸力和含水量之间的关系,与非饱和土的渗流和强度等特征有密切关系。本文通过对100组砂土的粒径分布曲线和土水特征曲线进行分析,结合常用的VG模型提出了基于粒径分布曲线的非饱和砂土土水特征曲线概率预测方法,并基于另外30组数据对提出的模型进行了验证。研究表明,基于粒径分布曲线无法唯一确定土体的土水特征曲线。与已有方法相比,提出的方法不但可以预测土水特征曲线的最可能位置,还可以预测土水特征曲线的变异性范围,由此可考虑基于粒径分布曲线对土水特征曲线进行估算时存在的模型误差。Abstract: The soil water characteristic curve(SWCC) of an unsaturated soil defines the relationship between the matrix suction and the water content. It is closely related to the permeability and shear strength of unsaturated soils. In this paper, based on statistical analyses of the soil water characteristic curves(SWCCs) and particle size distributions(PSDs) of 100 sand samples, a probabilistic method is suggested to predict the SWCC based on PSD through the commonly used VG model. The validity of the developed model is then assessed through 30 sets of independent data. Results from this study show that SWCC cannot be uniquely determined based on PSD. Compared with the existing methods, the proposed method can not only predict the most probable SWCC, but also the variability of the SWCC such that the error associated with the prediction model can be explicitly considered.
-
表 1 VG模型参数相关性分析
Table 1. Correlation analysis of VG model parameters
相关系数 ln d10 ln d30 ln d60 ln e ln Cc ln Cu a 0.437 0.542 0.518 -0.109 0.101 -0.215 ln a 0.493 0.752 0.695 -0.321 0.153 -0.128 n 0.201 -0.087 -0.206 0.083 -0.321 0.390 ln n 0.196 -0.141 -0.308 0.104 -0.392 -0.456 -
Arya L M, Paris J F. 1982. Comments on a physicoempirical model to predict the soil-moisture characteristic from particle-size distribution and bulk-density data-reply[J]. Soil Science Society of America Journal, 46 (6): 1348-1982. Bao C G. 2004. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 26 (1): 1-15. Cosby B J, Hornberger G M, Clapp R B, et al. 1984. A statistical exploration of the relationships of soil-moisture characteristics to the physical-properties of soils[J]. Water Resources Research, 20 (6): 682-690. doi: 10.1029/WR020i006p00682 Fredlund D G, Xing A. 1994. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 31 : 1026. doi: 10.1139/t94-120 Gao Y, Sun D A. 2017. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 39 (10): 1884-1891. Gardner W R, Fireman M. 1958. laboratory studies of evaporation from soil columns in the presence of a water table[J]. Soil Science, 85 (5): 244-249. doi: 10.1097/00010694-195805000-00002 Hou S M, Li Y R, Liu G L. 2007. A new method of detecting nonlinear for time series based on KS test[J]. Journal of Electronics & Information Technology, 29 (4): 808-810. Hu R, Chen Y F, Zhou C B. 2013. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 35 (8): 1451-1462. Leij F J. 1996. UNSODA unsaturated soil hydraulic database[R]. Cincinnati: U. S. Environmental Protection Agency. Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27 (5): 1019-1026. Li X, Li J H, Zhang L M. 2014. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers and Geotechnics, 57 : 85-96. doi: 10.1016/j.compgeo.2014.01.004 Li Z Q, Li T, Hu R L, et al. 2007. Methods for testing and predicting of SWCC in unsaturated soil mechanics[J]. Journal of Engineering Geology, 15 (5): 700-707. Mohammadi M H, Vanclooster M. 2011. Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model[J]. Vadose Zone Journal, 10 (2): 594-602. doi: 10.2136/vzj2010.0080 Mukaka M M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research[J]. Malawi Medical Journal: the Journal of Medical Association of Malawi, 24 (3): 69-71. Pan D L, Ni W K, Yuan K Z, et al. 2020. Determination of soil-water characteristic curve variables based on VG model[J]. Journal of Engineering Geology, 28 (1): 69-76. Qi G Q, Huang R Q. 2004. An universal mathematical model of soil-water characteristic curve[J]. Journal of Engineering Geology, 12 (2): 182-186. Saxton K E, Rawls W J, Romberger J S, et al. 1986. Estimating generalized soil-water characteristics from texture[J]. Soil Science Society of America Journal, 50 (4): 1031-1036. doi: 10.2136/sssaj1986.03615995005000040039x Shi Z M, Liu W R, Peng M, et al. 2018. Experimental study on soil-water characteristic curve of reticulate red clay and its application in slopestability evaluation[J]. Journal of Engineering Geology, 26 (1): 164-171. Tang L S, Yan B, Li Z S, et al. 2008. The experimental research on the soil-water characteristic curve of the granite residual soil[J]. Hydrogeology & Engineering Geology, (4): 62-65, 79. Tao G L, Kong L W. 2018. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 40 (S1): 34-38. The National Standards Compilation Group of People's Republic of China. 2009. Code for Geotechnical Engineering Investigation(GB50021-2001)[S]. Beijing: China Architecture & Building Press. van Genuchten M T V. 1980. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x Vanapalli S K, Fredlund D G, Pufahl D E. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33 : 379-392. doi: 10.1139/t96-060 Wang J, Wu X M, Wang A F. 2014. The application of pearson correlation coefficient algorithmin in searching for the users with abnormal watt-hour meters[J]. Power Demand Side Management, (2): 57-59. Zhang X D, Zhao C G, Liu Y, et al. 2010. Simulation and hysteresis model for soil-water characteristic curves[J]. Journal of Engineering Geology, 18 (6): 920-925. Zhao J S, Zhuang G M, Wang Z G. 2010. Introduction to the maximum likelihood estimation method[J]. Journal of Changchun University of Science and Technology, 5 (6): 53-54. 包承纲. 2004. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 26 (1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401001.htm 高游, 孙德安. 2017. 单峰和双峰土水特征曲线基本参数的确定[J]. 岩土工程学报, 39 (10): 1884-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710023.htm 侯澍旻, 李友荣, 刘光临. 2007. 一种基于KS检验的时间序列非线性检验方法[J]. 电子与信息学报, 29 (4): 808-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200704010.htm 胡冉, 陈益峰, 周创兵. 2013. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 35 (8): 1451-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm 李同录, 范江文, 习羽, 等. 2019. 击实黄土孔隙结构对土水特征的影响分析[J]. 工程地质学报, 27 (5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045 李志清, 李涛, 胡瑞林, 等. 2007. 非饱和土土水特征曲线(SWCC)测试与预测[J]. 工程地质学报, 15 (5): 700-707. http://www.gcdz.org/article/id/8925 潘登丽, 倪万魁, 苑康泽, 等. 2020. 基于VG模型确定土水特征曲线基本参数[J]. 工程地质学报, 28 (1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156 石振明, 刘巍然, 彭铭, 等. 2018. 网纹红土土水特征曲线试验研究及其在边坡稳定性评价中的应用[J]. 工程地质学报, 26 (1): 164-171. doi: 10.13544/j.cnki.jeg.2018.01.018 汤连生, 颜波, 李振嵩, 等. 2008. 花岗岩残积土水土特征曲线的试验研究[J]. 水文地质工程地质, (4): 62-65, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200804019.htm 陶高粱, 孔令伟. 2018. 不同初始孔隙比土体进气值及土-水特征曲线预测[J]. 岩土工程学报, 40 (S1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1007.htm 王涓, 吴旭鸣, 王爱凤. 2014. 应用皮尔逊相关系数算法查找异常电能表用户[J]. 电力需求侧管理, (2): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXQ201402015.htm 张雪东, 赵成刚, 刘艳, 等. 2010. 土水特征曲线(SWCC)的滞回特性模拟研究[J]. 工程地质学报, 18 (6): 920-925. http://www.gcdz.org/article/id/8746 赵军圣, 庄光明, 王增桂. 2010. 极大似然估计方法介绍[J]. 长春理工大学学报, 5 (6): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CCLZ201006027.htm 中华人民共和国国家标准编写组. 2009. 岩土工程勘察规范(GB50021-2001)[S]. 北京: 中国建筑工业出版社 -