孔隙介质中天然气水合物相变过程的影响因素研究进展

肖罗坤 董艳辉 李守定 王礼恒 段瑞琪 符韵梅

肖罗坤,董艳辉,李守定,等. 2021.孔隙介质中天然气水合物相变过程的影响因素研究进展[J].工程地质学报,29(1):183-196. doi:10.13544/j.cnki.jeg.2020-206 doi: 10.13544/j.cnki.jeg.2020-206
引用本文: 肖罗坤,董艳辉,李守定,等. 2021.孔隙介质中天然气水合物相变过程的影响因素研究进展[J].工程地质学报,29(1):183-196. doi:10.13544/j.cnki.jeg.2020-206 doi: 10.13544/j.cnki.jeg.2020-206
Xiao Luokun, Dong Yanhui, Li Shouding, et al. 2021. Research progresses on the influencing factors of natural gas hydrates phase transition process in porous media[J]. Journal of Engineering Geology, 29(1): 183-196. doi: 10.13544/j.cnki.jeg.2020-206
Citation: Xiao Luokun, Dong Yanhui, Li Shouding, et al. 2021. Research progresses on the influencing factors of natural gas hydrates phase transition process in porous media[J]. Journal of Engineering Geology, 29(1): 183-196. doi: 10.13544/j.cnki.jeg.2020-206

孔隙介质中天然气水合物相变过程的影响因素研究进展

doi: 10.13544/j.cnki.jeg.2020-206
基金项目: 

中国科学院地质与地球物理研究所重点部署项目 IGGCAS-201903

广东省基础与应用基础研究重大项目 2020B0301030003

详细信息
    作者简介:

    肖罗坤(1996-),男,硕士生,主要从事天然气水合物开发方面的研究. E-mail: xiaoluokun@mail.iggcas.ac.cn

  • 中图分类号: O742+.6

RESEARCH PROGRESSES ON THE INFLUENCING FACTORS OF NATURAL GAS HYDRATES PHASE TRANSITION PROCESS IN POROUS MEDIA

Funds: 

the Key Research Program of the Institute of Geology & Geophysics, CAS IGGCAS-201903

Guangdong Major Project of Basic and Applied Basic Research 2020B0301030003

  • 摘要: 天然气水合物储量巨大且富含甲烷,被视为21世纪最重要的潜在新型清洁能源之一。天然气水合物大多赋存在海底沉积物的孔隙介质中(少部分赋存于永久冻土层中),对其相变过程受孔隙介质影响规律的系统梳理和总结对未来的勘探开发具有重要意义。本文综合分析前人研究成果,将孔隙介质中天然气水合物的相变过程概化为水合物形成分解时的温压平衡条件变化、速率、稳定性、转化效率以及生长形态、分布状态等;将影响因素分为孔隙介质特性如孔径及粒径、润湿性、导热性能,以及孔隙介质中的物理化学因素如温压和水气条件,并总结了其影响规律和影响机理:(1)孔径及粒径能影响水合物温压平衡条件,较小粒径还能加快水合物相变速率,降低其转化效率。(2)润湿性能够决定水合物的微观生长形态及其与孔隙介质间的接触形式,亲水性强的介质表面能加快水合物的相变速率。(3)孔隙介质导热性能越强,水合物的相变速率越大。(4)温压条件控制下的温压驱动力越大,水合物的相变速率越大,但这种趋势不适用于温压驱动力过大的情形。(5)水气条件影响着水合物相变过程的温压平衡条件、相变速率、稳定性及分布状态。另外,本文分析了目前研究中的不足,并给出了未来的重点研究方向。
  • 图  1  不同粒径孔隙介质对水合物温压平衡曲线的影响(李明川等,2007)

    Figure  1.  Effect of porous media with different particle size on the temperature and pressure equilibrium curve of hydrate(Li et al., 2007)

    图  2  水合物形成过程中颗粒粒径对NMR信号变化速率(水合物形成速率)的影响(Bagherzadeh et al., 2011)

    a. 210~295 μm;b. 125~219 μm;c. 88~177 μm;d.<74 μm

    Figure  2.  Effect of the particle size on the rate of change in the NMR intensity as a result of hydrate formation (Bagherzadeh et al., 2011)

    图  3  不同润湿性石英颗粒与水合物之间的接触形式(Chaouachi et al., 2015)

    a.石英颗粒与水合物之间存在一层水膜;b.水石英颗粒与水合物之间存在较多气泡

    Figure  3.  Contact forms between quartz particles with different wettability and hydrate(Chaouachi et al., 2015)

    图  4  不同降压速率和降压范围对水合物分解速度的影响

    (情形1:从初始压力降压至3.0 MPa;情形2:从初始压力降压至2.6 MPa;情形3:从初始压力降压至2.2 MPa)(Fan et al., 2017)

    Figure  4.  Effects of different decompression rates and ranges on the hydrate decomposition process

    图  5  不同气体组分及含量对天然气水合物温压平衡曲线的影响(王淑红等,2005)

    Figure  5.  Effects of different gas components and contents on the temperature and pressure equilibrium curve of hydrate (Wang et al., 2005)

    图  6  不同初始水饱和度情况下水合物形成过程中水信号丢失过程(Wang et al., 2017)

    (图中,上下两组实验的初始水饱和度分别为0.113和0.178)

    Figure  6.  Loss of water signal during hydrate formation under different initial water saturations

    表  1  孔径及粒径对水合物相变过程的影响总结

    Table  1.   Summary of the influence of pore diameter and particle size on hydrate phase transition process

    影响因素 孔隙介质类型 影响规律 参考出处
    孔径 孔径范围在3.5~5.7 μm砂岩 平衡压力随孔径减小而增大 Makogon,1981
    孔径 平衡温度随孔径减小而减小 Clennell et al., 1999
    孔径 平衡温度/压力随孔径减小而减小/增大 Henry et al., 1999
    孔径 富含微化石的沉积物 平衡温度随孔径减小而减小 Lu et al., 2002
    孔径 2.8~10.4nm孔径范围硅胶 生成温度较块状水合物低 Aladko et al., 2004
    孔径 砂样、黏土 分解温度较块状水合物低,且随孔径减小而减小 Uchida et al., 2004
    粒径 粒径范围在0.125~0.300 mm石英砂 生成温度/压力随粒径增大而增大/减小 李明川等,2007
    粒径 粒径范围在177~296 μm的粗砂及53~177 μm的细砂 水合物分布在粗砂中较为均匀,在细砂中较为集中 Seol et al., 2009
    粒径 粒径范围在210~297 μm,125~210 μm,88~177 μm和<75 μm的砂岩 形成速率随粒径增大而减小 Bagherzadeh et al., 2011
    粒径 平均粒径分别为3 mm,1.2 mm,0.4 mm和0.1 mm的玻璃微珠 形成速率随粒径增大而减小 Cheng et al., 2013
    粒径 粒径范围在150~250 μm和250~380 μm的沉积物体系 形成转化效率随粒径增大而减小 Zang et al., 2013
    粒径 平均粒径为1.5 mm和500μm的Al2O3球介质 对水合物相变过程分布状态变化产生影响 李晨安等,2018
    下载: 导出CSV

    表  2  水气条件差异对水合物相变过程的影响总结

    Table  2.   Summary of the influence of water and gas conditions in porous media on hydrate phase transition process

    影响因素 孔隙介质类型 水气条件 影响规律 参考出处
    气体组分及含量 ①100%甲烷;②98%甲烷,2%丙烷;③95%甲烷,5%硫化氢;④95%甲烷,5%氮气等 平衡温度/压力随其他气体的加入而增大/减小(N2除外) 王淑红等,2005
    气体组分及含量 玻璃砂 ①100%甲烷;②95.8%甲烷,2.2%乙烷,2.0%丙烷;③89.2%甲烷,5.8%乙烷,5.0%丙烷等 平衡温度/压力随甲烷组分比重减小而增大/减小 刘瑜等,2006
    气体流速 玻璃微珠 流速:①0.3 mL·min-1;②0.6 mL·min-1;③0.9 mL·min-1 形成过程稳定性随流速增大而降低 Song et al., 2015
    气体流速及流向 玻璃微珠 流速:0.2 mL·min-1;0.4 mL·min-1;0.6 mL·min-1;流向:上、下 形成过程稳定性随流速增大而降低,气体向上使水合物分布更不均匀 Wang et al., 2018
    初始气体饱和度 砂岩岩芯 初始气体饱和度高于残余非液相饱和度 分解速率在过大初始气饱和度下减小 Sun et al., 2005
    初始气体饱和度 初始气体饱和度:0.1~0.5 分解速率随初始气饱和度增大而增大 Liang et al., 2010
    初始水饱和度 玻璃微珠 初始水饱和度:0.113和0.178 形成速率随初始水饱和度增大而减小 Wang et al., 2017
    水中盐分 砂岩岩芯 ①无盐分;②有盐分 分解速率随盐分的加入而减小 Sun et al., 2005
    水中盐分 粒径在100~500 mm之间的石英砂 NaCl:1.5wt%、3.0wt%;MgCl2:1.5wt%、3.0wt%、5.0wt%;KCl:1.5wt%、3.0wt% 形成速率随盐分浓度的增加而减小 Zheng et al., 2015, 2017
    水中有机质 韩国Ulleung盆地海洋沉积物岩芯样品 ①无有机质;②10%有机质含量 形成速率随有机质的加入而增大 Lamorena et al., 2011
    水中有机质 砂-黏土混合物 腐殖酸:2.0wt%和10wt% 形成速率随有机质浓度增大而增大 Lü et al., 2019
    “自保护效应” 砂岩 分解速率减小 Nikitin et al., 2020
    “自保护效应” 石英砂 分解速率减小 Xie et al., 2020
    “记忆效应” 石英砂 形成速率增大 Chaouachi.,2015
    “记忆效应” 石英、黏土矿物混合物 形成速率增大 Khlebnikov et al., 2017
    下载: 导出CSV
  • Abdelhafid T, Daniel B, Arnaud D. 2019. Gas hydrate crystallization in thin glass capillaries: Roles of supercooling and wettability[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 35(38): 12569-12581.
    Abdelhafid T, Daniel B, Nelly H, et al. 2017. Roles of wettability and supercooling in cyclopentane hydrate spreading over a substrate[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 33(41): 10965-10977.
    Aladko E Y, Dyadin Y A, Fenelonov V B, et al. 2004. Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content[J]. The Journal of Physical Chemistry B, 108: 16540-16547.
    Anderson R, Liamedo M, Tohidi B, et al. 2003. Characteristics of clathrate equilibria in mesopores and interpretation of experimental data[J]. The Journal of Physical Chemistry B, 107(15): 3500-3506.
    Bagherzadeh S A, Moudrakovski I L, Ripmeester J A, et al. 2011. Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles[J]. Energy & Fuels, 25(7): 3083-3092.
    Chaouachi M, Falenty A, Sell K, et al. 2015. Microstructural evolution of gas hydrates in sedimentary matrix observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 16(6): 1711-1722.
    Chen J, Yan K L, Jia M L, et al. 2013. Memory effect test of methane hydrate in water+diesel oil+sorbitan monolaurate dispersed system[J]. Energy Fuel, 27(12): 7259-7266.
    Chen Q, Ye Y G, Liu C L, et al. 2010. Experimental research of methane hydrate phase transformation in porous media[J]. Geoscience, 24(5): 972-978.
    Cheng C X, Zhao J F, Song Y C, et al. 2013. In-situ observation for formation and dissociation of carbon dioxide hydrate in porous media by magnetic resonance imaging[J]. Science China Earth Sciences, 56(4): 611-617.
    Cheng C X. 2015. Study of heat transfer characteristic and the effects on exploitation for natural gas hydrate sediments[D]. Dalian: Dalian University of Technology.
    Clarke M A, Mehran P D, Raj B P, et al. 1999. A method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Industrial & Engineering Chemistry Research, 38: 2485-2490.
    Clennell M B, Hovland M, Booth J S, et al. 1999. Formation of natural gas hydrates in marine sediments 1: Conceptual model of gas hydrate growth conditioned by host sediment properties[J]. Journal of Geophysics Research B, 104(B10): 22985-23003.
    Collett T S. 2001. Natural Gas Hydrate-Vast Resource, Uncertain Future[M]. USA: USGS.
    Cui S T, Cochran H D. 2002. Molecular dynamics simulation of interfacial electrolytes behaviors in nanoscale cylindrical pores[J]. Journal of Chemical Physics, 117(12): 5850-5854.
    Ding L Y, Geng C Y, Zhao Y H, et al. 2008. Molecular dynamics simulation of methane hydrate decomposition and self-protection effect[J]. Science China(Volume B: Chemistry),(2): 161-169.
    Dong F H, Zang X Y, Li D L, et al. 2009. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy & Fuels, 23(3): 1563-1567.
    Du Y S, Feng Q Z, Xu B C, et al. 2018. Research status and existing problems in oceanic gas hydrate trial production[J]. Exploration Engineering, 45(4): 6-9.
    Esmail S, Beltran J G. 2016. Methane hydrate propagation on surfaces of varying wettability[J]. Journal of Natural Gas Science and Engineering, 35: 1535-1543.
    Fan B B. 2013. The effect of behaviors of heat transfer on hydrate dissociation in Muli gas hydrate reservoir[D]. Wuhan: China University of Geosciences(Wuhan).
    Fan Z, Sun C M, Kuang Y, et al. 2017. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation[J]. Energy Procedia, 105: 4763-4768.
    Fu Q, Zhou S W, Li Q P. 2015. Natural gas hydrate exploration and production technology research status and development strategy[J]. Strategic Study of CAE, 17(9): 123-132.
    Fuji T, Kamada K, Sato T, et al. 2020. Numerical simulation of crystal growth of CO2 hydrate within microscopic Sand pores using phase field model for the estimation of effective permeability[J]. International Journal of Greenhouse Gas Control, 95: 102960.
    Haligva C, Linga P, Ripmeester J A, et al. 2010. Recovery of methane from a variable-volume bed of silica sand/hydrate by depressurization[J]. Energy & Fuels, 24: 2947-2955.
    Handa Y P. 1986. Calorimetric determinations of the composition, enthalpies of dissociation and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton[J]. The Journal of Chemical Thermodynamics, 18: 891-902.
    Haq B U. 1999. Natural gas deposits-Methane in the deep blue sea[J]. Science, 285(5427): 543-544.
    Henry P, Thomas M, Clennell M B. 1999. Formation of natural gas hydrates in marine sediments 2: Thermodynamic calculations of stability conditions in porous sediments[J]. Geophysical Research Earth Surface, 104: 23005-23022.
    Hong H, Pooladi-Darvish M, Bishnoi P. 2003. Analytical modelling of gas production from hydrates in porous media[J]. Journal of Canadian Petroleum Technology, 42(11): 45-56.
    Ji H Q, Wu G Z, Zi M, et al. 2016. Microsecond molecular dynamics simulation of methane hydrate formation in humic-acid-amended sodium montmorillonite[J]. Energy & Fuels, 30: 7206-7213.
    Jiang H Q. 2020. Success in the trial exploitation of natural gas hydrate in sea areas of China-a new world record and significant achievements[J]. Resources & Industries, 22(1): 96.
    Khlebnikov V N, Antonov S V, Mishin A S, et al. 2017. Major factors infl uencing the formation of natural gas hydrates in porous media[J]. Natural Gas Industry, 37(5): 38-45.
    Kneafsey T J, Tomutsa L, Moridis G J, et al. 2007. Methane hydrate formation and dissociation in a partially saturated core-scale sand Sample[J]. Journal of Science and Engineering, 56(1): 108-126.
    Koh C A, Sum A K, Sloan E D. 2012. State of the art: natural gas hydrates as a natural resources[J]. Journal of Natural Gas Science and Engineering, 8: 132-138.
    Kyung D, Lim H K, Kim H, et al. 2015. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface[J]. Environmental Science & Technology, 49(2): 1197-1205.
    Lamorena R B, Kyung D, Lee W. 2011. Effect of organic matters on CO2 hydrate formation in Ulleung Basin sediment suspensions[J]. Environmental Science & Technology, 45(14): 6196-6203.
    Lee S Y, Holder G D. 2001. Methane hydrates potential as a future energy source[J]. Fuel Processing Technology, 71(1): 181-186.
    Li B, Li X S, Li G, et al. 2014. Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator[J]. Applied Energy, 129: 274-286.
    Li C A, Li C F, Liu C L, et al. 2018. The observation of distribution of hydrates in porous media with different particle sizes using CT imaging technology[J]. Nuclear Electronics & Detection Technology, 38(4): 101-107.
    Li G, Li X S, Tang L G, et al. 2007. Experimental investigation of production behavior of methane hydrate under ethylene glycol stimulation in unconsolidated sediment[J]. Energy & Fuels, 21(6): 3388-3393.
    Li J, Lu J A, Kang D J, et al. 2019. Lithological characteristics and hydrocarbon gas sources of gas hydrate-bearing sediments in the Shenhu area, South China Sea: Implications from the W01B and W02B sites[J]. Marine Geology, 408: 36-47.
    Li M C, Fan S S, Zhao J Z, et al. 2007. The effect of porous media on the formation of natural gas hydrate[J]. Geophysical Prospecting for Petroleum, 46(1): 13-15.
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27(1): 58-71.
    Li S D, Li X, Wang S J, et al. 2020. A novel method for natural gas hydrate production: Depressurization and backfilling with in-situ supplemental heat[J]. Journal of Engineering Geology, 28(2): 282-293.
    Li S X, Liu J L, Wu D D, et al. 2018. Numerical study of hydrate depressurization dissociation in Shenhu area[J]. Science Technology and Engineering, 18(24): 38-43.
    Li X Y, Wang Y, Li X S, et al. 2019. Experimental study of methane hydrate dissociation in porous media with different thermal conductivities[J]. International Journal of Heat and Mass Transfer, 144: 118528.
    Liamedo M, Anderson R, Tohidi B. 2015. Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media[J]. The American Mineralogist, 89(8-9): 1264-1270.
    Liang H F, Song Y C, Chen Y J. 2010. Numerical simulation for laboratory-scale methane hydrate dissociation by depressurization[J]. Energy Conversion and Management, 51(10): 1883-1890.
    Liang J Q, Wei J G, Bigalke N, et al. 2017. Laboratory quantification of geomechanical properties of hydrate-bearing sediments in the Shenhu area of the South China Sea at in-situ conditions[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, USA: [s.n.].
    Linga P, Haligva C, Nam S C, et al. 2009. Gas hydrate formation in a variable volume bed of silica sand particles[J]. Energy & Fuel, 23(6): 5496-5507.
    Liu W, Jin X L, Chu F Y, et al. 2011. Influencing factors of equilibrium conditions of natural gas hydrate in seabed[J]. Marine Geology Frontiers, 27(5): 16-23.
    Liu Y, Song Y C, Yang M J, et al. 2009. Effects of gas composition on hydrate phase equilibrium in sedimentary layers[EB/OL]. Beijing: Sciencepaper Online.
    Lu H L, Matsumoto R. 2002. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 36: 21-30.
    Lu X C, Hou Q F, Yin L, et al. 2003. Measurement of contact angles of several common minerals and its discussion[J]. Acta Petrologica et Mineralogica, 22(S1): 397-400.
    Lu X C, Yang T, Liu X D, et al. 2005. Recent advance in study of methane hydrate stability in porous media[J]. Geoscience, 19(1): 89-95.
    Lü T, Li X S, Chen Z Y, et al. 2019. Effect of fulvic acid on methane hydrate formation and dissociation in mixed porous media[J]. Energy Procedia, 158: 5323-5328.
    Ma X J. 2014. Model studies of effect of physical properties of methane-hydrate-bearing reservoirs on dissociation of methane hydrates[D]. Dalian: Dalian University of Technology.
    Makogon Y F. 1981. Hydrate of Natural Gas[C]. Tulsa: PennWell.
    Minagawa H, Ito T, Kimura S, et al. 2017. Depressurization and electrical heating of methane hydrate sediment for gas production: Laboratory-scale experiments[J]. Journal of Natural Gas Science and Engineering, 50: 147-156.
    Moridis G J, Collett T S. 2004. Gas production from Class 1 hydrate accumulations[M]//Advances in the Study of Gas Hydrates. US: Springer: 83-97.
    Moridis G J, Silpngarmlert S, Reagan M T, et al. 2011. Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: implications of uncertainties[J]. Marine & Petroleum Geology, 28(2): 517-534.
    Moridis G J, Sloan E D. 2007. Gas production potential of disperse accumulations in oceanic sediments[J]. Energy Conversion and Management, 48(6): 1834-1849.
    Nazridoust K, Ahmadi G. 2007. Computational modeling of methane hydrate dissociation in a sandstone core[J]. Chemical Engineering Science, 62(22): 6155-6177.
    Nikitin V V, Dugarov G A, Duchkov A A, et al. 2020. Dynamic in-situ imaging of methane hydrate formation and selfpreservation in porous media[J]. Marine and Petroleum Geology, 115: 104234.
    Pang W X, Xu W Y, Sun C Y, et al. 2009. Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method[J]. Fuel, 88(3): 497-503.
    Pooladi-Darvish M, Hong H. 2004. Effect of conductive and convective heat flow on gas production from natural hydrates by depressurization[J]. Advances in the Study of Gas Hydrates, 43-65.
    Ruppel C D. 2017. Gas Hydrate in nature[M]. USA: USGS.
    Seol Y, Kneafsey T J. 2009. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand[J]. Journal of Petroleum Science & Engineering, 66(3-4): 121-132.
    Shi D X. 2014. Fundamental research on extraction natural gas hydrate in porous media[D]. Taiyuan: Taiyuan University of Technology.
    Sloan E D, Koh C A. 2007. Clathrate hydrates of natural gases[M]. 3rd ed. Florida: CRC Press.
    Sloan E D. 2003. Fundamental principles and applications of natural gas hydrates[J]. Nature, 426(6964): 353-359.
    Song Y C, Wang P F, Jiang L L, et al. 2015. Methane hydrate formation/reformation in three experimental modes: A preliminary investigation of blockage prevention during exploitation[J]. Journal of Natural Gas Science & Engineering, 27(Part3): 1814-1820.
    Song Y C, Yang M J, Liu Y, et al. 2009. Detection device for formation and decomposition of natural gas hydrate China, CN101451985[P]. 2009-06-10.
    Stern L A, Circone S, Kirby S H, et al. 2003. Temperature, pressure, and compositional effects on anomalous or"self" preservation of gas hydrates[J]. Canadian Journal of Physics, 81(1): 271-283.
    Sum A K, Burruss R C, Sloan E D. 1997. Measurement of clathrate hydrates via Raman spectroscopy[J]. The Journal of Physical Chemistry B, 101(38): 7371-7377.
    Sun X F, Mohanty K K. 2005. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 61(11): 3476-3495.
    Uchida T, Sakurai T, Hondoh T. 2011. Ice-shielding models for self-preservation of gas hydrates[J]. Journal of Chemistry and Chemical Engineering, 5: 691-705.
    Uchida T, Takeya S, Chuvilin E M, et al. 2004. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads[J]. Journal of Geophysical Research, 109(B5): B05206.
    Wang C Y, Guo Y Z. 2019. The perfect combination of ice and fire-natural gas hydrate[J]. Knowledge is Power, 6.
    Wang P F, Wang S L, Song Y C, et al. 2018. Dynamic measurements of methane hydrate formation/dissociation in different gas flow direction[J]. Applied Energy, 227: 703-709.
    Wang P F, Yang M, Chen B, et al. 2017. Methane hydrate reformation in porous media with methane migration[J]. Chemical Engineering Science, 168: 344-51.
    Wang R, Wang T J. 2020. Production dynamic analysis and parameter optimization of gas hydrate depressurization-heat injection mining in Shenhu sea area[J]. Petrochemical Industry Technology, 27(3): 76-77.
    Wang S H, Song H B, Yan W. 2005. The change of external conditions effects on the phase equilibrium curve of gas hydrate and the thickness of hydrate stability zone[J]. Chinese Journal of Geophysics, 20(3): 761-768.
    Wang Y, Li X S, Li G, et al. 2013. Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system[J]. Applied Energy, 110: 90-97.
    Wu Q, Zhang B Y. 2010. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation[J]. Journal of Natural Gas Chemistry, 19(4): 446-451.
    Xie Y, Zheng T, Zhong J R, et al. 2020. Experimental research on self-preservation effect of methane hydrate in porous sediments[J]. Applied Energy, 268: 115008.
    Xue K H. 2016. Study on formation and dissociation characteristics of the natural gas hydrate[D]. Dalian: Dalian University of Technology.
    Yang L. 2017. Evolution of gas hydrate microstructures during phase transition and its effect on macro physical properties[D]. Dalian: Dalian University of Technology.
    Yang X, Sun C Y, Yuan Q, et al. 2010. Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection[J]. Energy Fuels, 24(11): 5912-20.
    Yu X C, Zhao J Z, Wu Y L. 2002. Prediction of hydrate formation conditions in porous media of sediments[J]. Natural Gas Industry, 22(6): 102-105.
    Yuan Q, Sun C Y, Yang X, et al. 2011. Gas production from methane-hydrate-bearing sands by ethylene glycol injection using a three-dimensional reactor[J]. Energy & Fuels, 25: 3108-3115.
    Zang X Y, Liang D Q, Wu N Y. 2013. Gas hydrate formation in fine sand[J]. Science China: Earth Sciences, 56(4): 549-556.
    Zang X Y, Liang D Q, Wu N Y. 2015. Research progress on methane hydrate formation kinetics in porous media[J]. Advance in New and Renewable Energy,(2): 53-60.
    Zhang L, Zhao J, Dong H, et al. 2016. Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation[J]. Chemical Engineering Science, 144: 135-143.
    Zhang W X. 2018. Study on the hydrate formation and dissociation mechanism in porous media[D]. Guangzhou: South China University of Technology.
    Zhao J F, Liu D, Yang M J, et al. 2014. Analysis of heat transfer effects on gas production from methane hydrate by depressurization[J]. International Journal of Heat and Mass Transfer, 77: 529-541.
    Zhao J F, Wang C J, Yang M J, et al. 2015a. Existence of a memory effect between hydrates with different structures(Ⅰ, Ⅱ, and H)[J]. Journal of Natural Gas Science and Engineering, 26: 330-335.
    Zhao J F, Zhu Z H, Song Y C, et al. 2015b. Analyzing the process of gas production for natural gas hydrate using depressurization[J]. Applied Energy, 142: 125-134.
    Zhao M G, Wen T, Zhang M L, et al. 2020. The effect of rocky minerals on wettability[J]. Journal of Mathematics in Practice and Theory, 50(2): 170-178.
    Zheng R C, Chan A H M, Babu P. 2015. Effect of NaCl on methane hydrate formation and dissociation in porous media[J]. Journal of Natural Gas Science and Engineering, 27: 178-189.
    Zheng R C, Koh J W, Linga P, et al. 2017. Effect of Kcl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments[J]. Energy, 137: 518-529.
    陈强, 业渝光, 刘昌岭, 等. 2010.多孔介质中甲烷水合物相变过程模拟实验研究[J].现代地质, 24(5): 972-978.
    程传晓. 2015.天然气水合物沉积物传热特性及对开采影响研究[D].大连: 大连理工大学.
    丁丽颖, 耿春宇, 赵月红, 等. 2008.甲烷水合物分解及自保护效应的分子动力学模拟[J].中国科学(B辑: 化学),(2): 161-169.
    杜垚森, 冯起赠, 许本冲, 等. 2018.海域天然气水合物试采研究现状及存在的问题[J].探矿工程, 45(4): 6-9.
    范彬彬. 2013.木里盆地天然气水合物储层岩石传热特性对水合物分解影响的研究[D].武汉: 中国地质大学(武汉).
    付强, 周守为, 李清平. 2015.天然气水合物资源勘探与试采技术研究现状与发展战略[J].中国工程科学, 17(9): 123-132.
    姜焕琴. 2020.我国海域天然气水合物试采再传捷报-创造新的世界记录, 取得重大标志性成果[J].资源与产业, 22(1): 96.
    Khlebnikov V N, Antonov S V, Mishin A S, et al. 2017.多孔介质中天然气水合物生成的主要影响因素[J].天然气工业, 37(5): 38-45.
    李晨安, 李承峰, 刘昌岭, 等. 2018. CT图像法观测不同粒径多孔介质中水合物分布[J].核电子学与探测技术, 38(4): 101-107.
    李明川, 樊栓狮, 赵金洲, 等. 2007.多孔介质对天然气水合物形成的影响[J].石油物探, 46(1): 13-15.
    李守定, 孙一鸣, 陈卫昌, 等. 2019.天然气水合物开采方法及海域试采分析[J].工程地质学报, 27(1): 58-71. doi: 10.13544/j.cnki.jeg.2019-065
    李守定, 李晓, 王思敬, 等. 2020.天然气水合物原位补热降压充填开采方法[J].工程地质学报, 28(2): 282-293. doi: 10.13544/j.cnki.jeg.2020-061
    李淑霞, 刘佳丽, 武迪迪, 等. 2018.神狐海域水合物藏降压开采数值模拟研究[J].科学技术与工程, 18(24): 38-43.
    刘伟, 金翔龙, 初凤友, 等. 2011.海底天然气水合物相平衡的影响因素[J].海洋地质前沿, 27(5): 16-23.
    刘瑜, 宋永臣, 杨明君, 等. 2009.气体组分对沉积层水合物相平衡的影响[EB/OL].北京: 中国科技论文在线.
    陆现彩, 侯庆锋, 尹琳, 等. 2003.几种常见矿物的接触角测定及其讨论[J].岩石矿物学杂志, 22(S1): 397-400.
    陆现彩, 杨涛, 刘显东, 等. 2005.多孔介质中天然气水合物稳定性的实验研究进展[J].现代地质, 19(1): 89-95.
    马小晶. 2014.储层物性对甲烷水合物分解影响的模型研究[D].大连: 大连理工大学.
    石定贤. 2014.多孔介质天然气水合物开采的基础研究[D].太原: 太原理工大学.
    宋永臣, 杨明军, 刘瑜, 等. 2009.天然气水合物合成与分解的检测装置: 中国, CN101451985[P]. 2009-06-10.
    王晨阳, 郭友钊. 2019.冰与火的完美结合-可燃冰[J].知识就是力量, 06.
    王蕊, 王天驹. 2020.神狐海域水合物降压-注热开采生产动态分析及参数优化[J].石化技术, 27(3): 76-77.
    王淑红, 宋海斌, 颜文. 2005.外界条件变化对天然气水合物相平衡曲线及稳定带厚度的影响[J].地球物理学报, 20(3): 761-768.
    薛铠华. 2016.多孔介质中水合物赋存规律与分解特性研究[D].大连: 大连理工大学.
    杨磊. 2017.气体水合物相变过程微观结构演变及对宏观物性影响[D].大连: 大连理工大学.
    喻西崇, 赵金洲, 邬亚玲. 2002.地层多孔介质中水合物生成条件的预测[J].天然气工业, 22(6): 102-105.
    臧小亚, 梁德青, 吴能友. 2015.多孔介质中甲烷水合物的生成特性研究进展[J].新能源进展,(2): 53-60.
    张雯翔. 2018.介质孔隙中水合物形成与分解机制研究[D].广州: 华南理工大学.
    赵明国, 文韬, 张明龙, 等. 2020.岩石矿物对润湿性的影响[J].数学的实践与认识, 50(2): 170-178.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  84
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-06-29
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回