EXPERIMENTAL STUDY ON INFLUENCE AREA OF VIBRATION ISOLATION EFFECT OF RECTANGULAR GROOVE IN SAND SOIL FOUNDATION
-
摘要: 为了研究矩形沟槽的几何参数对沟后区域隔振效果的影响,通过现场试验分别测定自由地基以及设置矩形沟槽时相应控制点的加速度幅值,绘制关于两者比值的二维平面等值线图,以两者比值小于0.4的区域作为振动屏蔽区域,将振动屏蔽区域的面积作为隔振效果的评价指标进行分析;研究结果表明:瑞利波在传播过程中遇到矩形沟槽时会发生能量的重新分配,一部分瑞利波会突破沟槽的阻隔继续向前传播,另一部分瑞利波会被矩形沟槽反弹向后传播;矩形沟槽深度与瑞利波波长的比值为0.08~0.53时,增大该比值可以显著增大振动屏蔽区域的面积,当该比值为0.53~0.75时,对振动屏蔽区域的面积影响较小;矩形沟槽宽度与瑞利波波长的比值对振动屏蔽区域的影响较小;当矩形沟槽长度与瑞利波波长的比值在1.11~1.52范围内变化时,振动屏蔽区域的面积变化不明显;当矩形沟槽振源距离与瑞利波波长的比值为0.78~1.13时,该比值的变化对振动屏蔽区域的影响较小;矩形沟槽的归一化横截面积变化范围在0.02~0.78时对振动屏蔽区域的面积影响显著。Abstract: This paper aims to study the influence of geometric parameters of rectangular trench on the vibration isolation effect of the area behind the trench. The amplitude of acceleration at the corresponding control point when the free foundation and rectangular trench are measured respectively through field tests. The two-dimensional plane contour map about the ratio of the two are drawn. The area with a ratio less than 0.4 is taken as the vibration shielding area. The vibration shielding area is taken as the evaluation index of vibration isolation effect. The following conclusions are drawn through the research. Energy redistribution can occur when Rayleigh waves meet rectangular trench in the process of propagation. Part of Rayleigh waves can break through the barrier of trench and continue to propagate forward,while the other part can be bounced back by rectangular trench and propagate backward. When the ratio of rectangular groove depth to Rayleigh wave length is 0.08~0.53,increasing the ratio can significantly increase the vibration shielding area. But when the ratio is 0.53~0.75,it has little influence on the vibration shielding area. The ratio of rectangular trench width to Rayleigh wave length has little influence on the vibration shielding area. When the ratio of rectangular trench length to Rayleigh wave length varies within the range of 1.11~1.52,the vibration shielding area does not change significantly. When the ratio of the rectangular trench source distance to the Rayleigh wave length is 0.78~1.13,the change of the ratio has little influence on the vibration shielding area. When the normalized cross-sectional area of the trench varies from 0.02 to 0.78,it has a significant effect on the area of the vibration shielding area.
-
表 1 试验参数明细表
深度d/cm 宽度w/cm 长度l/cm 振源距离e/cm 30 5 100 30 50 15 120 60 70 25 140 104 表 2 波长明细表
Table 2. Wavelength schedule
频率/Hz 波长λR/m 30 3.67 60 1.93 120 0.92 表 3 深度参数工况明细表
Table 3. Depth parameter case list
试验工况 频率/Hz 深度d/cm 深度参数D 1-1 30 0.08 1-2 30 50 0.14 1-3 70 0.19 1-4 30 0.16 1-5 60 50 0.26 1-6 70 0.36 1-7 30 0.33 1-8 120 50 0.54 1-9 70 0.76 表 4 振动屏蔽区域面积一览表
Table 4. List of acreage of vibration shielding area
工况 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 D 0.08 0.14 0.19 0.16 0.26 0.36 0.33 0.54 0.76 S0.4/m2 0.16 0.27 0.33 0.25 0.29 0.41 0.37 0.40 0.45 表 5 深度参数列表
Table 5. Depth parameter list
D 0.08 0.31 0.53 0.75 S0.4/m2 0.20 0.36 0.42 0.47 S′0.4 1.50 0.39 0.23 0.16 表 6 宽度参数工况明细表
Table 6. Width parameter case list
试验工况 频率/Hz 宽度w/cm 宽度参数W 2-1 5 0.01 2-2 30 15 0.04 2-3 25 0.07 2-4 5 0.03 2-5 60 15 0.08 2-6 25 0.13 2-7 5 0.05 2-8 120 15 0.16 2-9 25 0.27 表 7 振动屏蔽区域面积一览表
Table 7. List of acreage of vibration shielding area
工况 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 W 0.01 0.04 0.07 0.03 0.08 0.13 0.05 0.16 0.27 S0.4/m2 0.26 0.27 0.32 0.28 0.29 0.33 0.31 0.40 0.38 表 8 长度参数工况明细表
Table 8. Length parameter working condition schedule
试验工况 频率/Hz 长度l/cm 长度参数L 3-1 100 0.27 3-2 30 120 0.33 3-3 140 0.38 3-4 100 0.52 3-5 60 120 0.62 3-6 140 0.73 3-7 100 1.09 3-8 120 120 1.30 3-9 140 1.52 表 9 振动屏蔽区域面积一览表
Table 9. List of acreage of vibration shielding area
工况 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 L 0.27 0.33 0.38 0.52 0.62 0.73 1.09 1.30 1.52 S0.4/m2 0.16 0.27 0.28 0.21 0.29 0.37 0.38 0.40 0.47 表 10 长度参数列表
Table 10. Length parameter list
L 0.29 0.70 1.11 1.52 S0.4 0.21 0.33 0.40 0.44 S′0.4 0.48 0.20 0.13 0.09 表 11 距离参数试验工况明细表
Table 11. Distance parameter case list
试验工况 频率/Hz 距离e/cm 距离参数E 4-1 30 0.08 4-2 30 60 0.16 4-3 104 0.28 4-4 30 0.16 4-5 60 60 0.31 4-6 104 0.54 4-7 30 0.33 4-8 120 60 0.65 4-9 104 1.13 表 12 振动屏蔽区域面积一览表
Table 12. List of acreage of vibration shielding area
工况 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 E 0.08 0.16 0.28 0.16 0.31 0.54 0.33 0.65 1.13 S0.4/m2 0.21 0.27 0.30 0.24 0.29 0.41 0.34 0.40 0.46 表 13 距离参数列表
Table 13. Distance parameter list
E 0.08 0.43 0.78 1.13 S0.4 0.19 0.36 0.42 0.45 S′0.4 1.25 0.23 0.13 0.09 表 14 归一化横截面积工况明细表
Table 14. Normalized cross-sectional area schedule of conditions
试验工况 频率/Hz 深×长/cm×cm 归一化横截面积N 5-1 30×100 0.02 5-2 30 50×120 0.04 5-3 70×140 0.07 5-4 30×100 0.08 5-5 60 50×120 0.16 5-6 70×140 0.26 5-7 30×100 0.35 5-8 120 50×120 0.71 5-9 70×140 1.16 表 15 振动屏蔽区域面积一览表
Table 15. List of acreage of vibration shielding area
工况 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 D 0.02 0.04 0.07 0.08 0.16 0.26 0.35 0.71 1.16 S0.4 /m2 0.16 0.27 0.30 0.20 0.29 0.37 0.38 0.40 0.49 表 16 归一化横截面积列表
Table 16. List of normalized cross-sectional areas
N 0.02 0.40 0.78 1.16 S0.4 0.18 0.39 0.43 0.46 S′0.4 3.50 0.18 0.09 0.06 -
Adam M,von Estorff O. 2005. Reduction of train-induced building vibrations by using open and filled trenches[J]. Computers and Structures,83 (1):11-24. doi: 10.1016/j.compstruc.2004.08.010 Alhussaini T M, Ahmad S. 1991. Design of wave barriers for reduction of horizontal ground vibration[J]. Journal of Geotechnical Engineering, 117 (4): 616-636. doi: 10.1061/(ASCE)0733-9410(1991)117:4(616) Deng Y H, Xia T D, Cheng J Y. 2007. Analysis of efficiency of vibration isolating groove subjected to vehicle load[J]. Rock and Soil Mechanics, 28 (5): 883-887, 894. Gao G Y, Geng J L, Bi J W, et al. 2019. Effect of subway induced environmental vibration on building site through in-situ measurement[J]. Journal of Engineering Geology, 27 (5): 1116-1121. Gao G Y, Wang H, Lin J, et al. 2016. Measurement and simulation of ground vibration near Longyang station of Shanghai metro line two[J]. Journal of Engineering Geology, 24 (S1): 408-414. Gao G Y, Zhu L Y, Li W H, et al. 2014. Vibration test and analysis at the People's Square of Shanghai, Metro Line 1[J]. China Earthquake Engineering Journal, 36 (3): 429-233. Li J P, Zhang X L, Feng S J. 2020. Research on effect of the moving water table on passive isolation effectiveness using a multiple open trench barrier. [J]. Rock and Soil Mechanics, 41 (9): 3131-3138, 3147. Liu J L, Feng G S, Zhang J, et al. 2018. Vibration isolation mechanism of concrete piles for Rayleigh waves on sand foundations[J]. Shock and Vibration: 1-13. Liu J L, Yu C Q, Liu H, et al. 2018. Influence of geometric parameters of isolation trench on vibration isolation effect[J]. Journal of Vibration Engineering, 31 (6): 930-940. Sheng X, Jones C J, Thompson D J. 2003. Ground vibration generatied by a harmonic load moving in a circular tunnel in a layered ground[J]. Journal of Low Frequericy Noise, Vibration and Active Control, 22 (2): 83-86. doi: 10.1260/026309203322770338 Shi G, Gao G Y. 2011. Two-dimensional analysis of open trench used as passive barriers in saturated soil[J]. Journal of Vibration and Shock, 30 (9): 157-162. Shi G, Guo Y C, Gao G Y. 2011. Two-dimensional analysis of in-filled trenches as passive barriers in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 33 (1): 104-111. Shrivastava R K, Rao N S. 2002. Response of soil media due to impulse loads and isolation using trenches[J]. Soil Dynamics and Earthquake Engineering, 22 (8): 695-702. doi: 10.1016/S0267-7261(02)00060-X Sun L Y, Shi G, Cui X Z, et al. 2020. Two-dimensional analysis of open trench as wave barrier to isolate ground vibrations by using in-situ test and semi-analytical BEM in saturated soil[J]. World Earthquake Engineering, 36 (2): 229-240. Tsai P H. 2013. Effects of open trench dimension on screening effectiveness for high speed train induced vibration[J]. Applied Mechanics and Materials, 256: 1187-1190. Woods R D. 1968. Screening of surface wave in soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 94 (4): 951-979. doi: 10.1061/JSFEAQ.0001180 Wu S M, Zeng G X, Cheng Y M, et al. 1988. Measurement of wave velocity of deposits by spectral analysis of surface waves[J]. Earthquake Engineering and Engineering Dynamics, 8 (4): 27-32. Xu B, Lei X Y, Xu M Q, et al. 2012. Analysis of effectiveness of passive isolation for vibration due to moving loads on saturated soil by using open trench with 2.5D boundary element method[J]. Rock and Soil Mechanics, 33 (4): 1079-1086, 1102. Xu C, Yuan L Q, Men Y M, et al. 2018. Dynamic model test for response of tunnel-stratum crossing ground fissure under vibration of metro[J]. Journal of Engineering Geology, 26 (5): 1360-1365. Xu J B, Hu J L. 2019. Theoretical study of effect of open trench vibration isolation on Rayleigh wave propagation[J]. Journal of the China Railway Society, 41 (10): 123-129. Xu P, Shi M S, Guo C J. 2015. Theoretical analysis of isolation effect of an open trench on incident SH waves[J]. Chinese Journal of Underground Space and Engineering, 11 (3): 647-651. Xu P, Zhang T H, Shi M S, et al. 2014. In-situ test and numerical simulation of isolation of impact loads by open trenches[J]. Rock and Soil Mechanics, 35 (S1): 341-346. Yan W M, Nie H, Ren M, et al. 2006. In situ experiment and analysis of ground surface vibration induced by urban subway transit[J]. Journal of railway Science and Engineering, 3 (2): 1-5. Yang Y B, Hung H H. 1997. A parametric study of wave barriers for reduction of train-induced vibrations[J]. International Journal for Numerical Methods in Engineering, 40: 3729-3747. doi: 10.1002/(SICI)1097-0207(19971030)40:20<3729::AID-NME236>3.0.CO;2-8 Yao J B, Hu J L. 2019. Theoretical study of effect of open trench vibration isolation on rayleigh wave propagation[J]. Journal of the China Railway Society, 41 (10): 123-129. 邓亚虹, 夏唐代, 陈敬虞. 2007. 车辆荷载作用下隔震沟隔震效率影响因素分析[J]. 岩土力学, 28 (5): 883-887, 894. doi: 10.3969/j.issn.1000-7598.2007.05.007 高广运, 耿建龙, 毕俊伟, 等. 2019. 地铁环境振动对建筑场地影响实测分析[J]. 工程地质学报, 27 (5): 1116-1121. doi: 10.13544/j.cnki.jeg.2019050 高广运, 王豪, 林健, 等. 2016. 上海地铁二号线龙阳路站地面振动测试与模拟分析[J]. 工程地质学报, 24 (S1): 408-414. doi: 10.13544/j.cnki.jeg.2016.s1.060 高广运, 朱林圆, 李卫华, 等. 2014. 上海地铁一号线人民广场振动测试与分析[J]. 地震工程学报, 36 (3): 429-433. doi: 10.3969/j.issn.1000-0844.2014.03.0429 李建平, 张晓磊, 冯世进. 2020. 水位变化对多空沟屏障远场隔振效果的影响研究[J]. 岩土力学, 41 (9): 3131-3138, 3147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009031.htm 刘晶磊, 于川情, 刘桓, 等. 2018. 隔振沟槽几何参数对隔振效果的影响研究[J]. 振动工程学报, 31 (6): 930-940. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201806003.htm 时刚, 高广运. 2011a. 饱和地基中二维空沟远场被动隔振研究[J]. 振动与冲击, 30 (9): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201109036.htm 时刚, 郭院成, 高广运. 2011b. 饱和地基中二维填充沟远场被动隔振研究[J]. 岩土工程学报, 33 (1): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101020.htm 孙连勇, 时刚, 崔新壮, 等. 2020. 饱和地基中空沟近场隔振的现场试验与二维半解析边界元分析[J]. 世界地震工程, 36 (2): 229-240. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202002025.htm 吴世明, 曾国熙, 陈云敏, 等. 1988. 利用表面波谱分析系测试土层波速[J]. 地震工程与工程振动, 8 (4): 27-32. 徐斌, 雷晓燕, 徐满清, 等. 2012. 饱和土体中空沟对移动荷载被动隔振的2.5D边界元法分析[J]. 岩土力学, 33 (4): 1079-1086, 1102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204019.htm 徐平, 石明生, 郭长江. 2015. 空沟对SH波隔离效果的理论解答[J]. 地下空间与工程学报, 11 (3): 647-651. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503019.htm 徐平, 张天航, 石明生, 等. 2014. 空沟对冲击荷载隔离的现场试验与数值模拟[J]. 岩土力学, 35 (S1): 341-346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1049.htm 许晨, 袁立群, 门玉明, 等. 2018. 地铁振动作用下穿越地裂缝隧道-地层动力响模型试验研究[J]. 工程地质学报, 26 (5): 1360-1365. doi: 10.13544/j.cnki.jeg.2018-174 闫维明, 聂晗, 任珉, 等. 2006. 地铁交通引起地面振动的实测与分析[J]. 铁道科学与工程学报, 3 (2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200602000.htm 姚锦宝, 胡敬梁. 2019. 空沟隔振对瑞利波传播影响的理论研究[J]. 铁道学报, 41 (10): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201910019.htm -