生活源污染质干湿循环下土体性质演化特征及机理

郭玉良 曹丽文 蔡念

郭玉良, 曹丽文, 蔡念. 2022. 生活源污染质干湿循环下土体性质演化特征及机理[J]. 工程地质学报, 30(2): 309-316. doi: 10.13544/j.cnki.jeg.2020-240
引用本文: 郭玉良, 曹丽文, 蔡念. 2022. 生活源污染质干湿循环下土体性质演化特征及机理[J]. 工程地质学报, 30(2): 309-316. doi: 10.13544/j.cnki.jeg.2020-240
Guo Yuliang, Cao Liwen, Cai Nian. 2022. Evolution characteristics and mechanism of silt clay properties under dry-wet cycle of pollution from living sources[J]. Journal of Engineering Geology, 30(2): 309-316. doi: 10.13544/j.cnki.jeg.2020-240
Citation: Guo Yuliang, Cao Liwen, Cai Nian. 2022. Evolution characteristics and mechanism of silt clay properties under dry-wet cycle of pollution from living sources[J]. Journal of Engineering Geology, 30(2): 309-316. doi: 10.13544/j.cnki.jeg.2020-240

生活源污染质干湿循环下土体性质演化特征及机理

doi: 10.13544/j.cnki.jeg.2020-240
基金项目: 

国家自然科学基金 41972281

国家自然科学基金 41372326

国家自然科学基金 41072236

详细信息
    作者简介:

    郭玉良(1992-),男,博士生,主要从事工程地质与环境岩土工程方面的研究. E-mail: guoyuliang@cumt.edu.cn

    通讯作者:

    曹丽文(1969-),女,博士,教授,博士生导师,主要从事环境工程地质与环境岩土工程方面的科研与教学工作. E-mail: caoliwen@cumt.edu.cn

  • 中图分类号: TU449

EVOLUTION CHARACTERISTICS AND MECHANISM OF SILT CLAY PROPERTIES UNDER DRY-WET CYCLE OF POLLUTION FROM LIVING SOURCES

Funds: 

the National Natural Science Foundation of China 41972281

the National Natural Science Foundation of China 41372326

the National Natural Science Foundation of China 41072236

  • 摘要: 以生活源污染质降解终端产物Na2CO3和Na3PO4的混合溶液为污染质溶液对中国徐州地区粉质黏土进行渗流,完成了10次干湿循环试验,分析了在生活源污染质干湿循环下粉质黏土性质的演化特征,并揭示了其演化机理。研究结果表明:粉质黏土在经过生活源污染质10次干湿循环的过程中,土体渗透性增强1~2个数量级,电阻率降低20~25Ω ·m,密度先减小到2g ·cm-3以下后有所回升,抗剪强度降低30kPa左右,且渗流路径长的土体性质变化具有一定的滞后性;在干湿循环过程中土体表面干缩裂缝逐渐发育扩展;干湿循环土样渗流路径越短,元素的密度变化量越大;生活源污染质干湿循环下土体性质发生变化的主要原因是渗流冲刷作用、化学反应、Na+离子吸附作用、湿胀干缩作用和重力下渗作用共同作用的结果。
  • 图  1  土颗粒分析曲线

    Figure  1.  Grain size accumulation curve of soil

    图  2  土体渗透测试仪

    Figure  2.  Soil penetration tester

    图  3  土体渗透系数随干湿循环次数的变化曲线

    Figure  3.  Change curve of soil permeability coefficient with the times of dry-wet cycle

    图  4  土体密度和电阻率随干湿循环次数的变化曲线

    a. 密度;b. 电阻率

    Figure  4.  Change of soil density and resistivity with the number of cycles under the condition of dry-wet cycle

    图  5  土体抗剪强度随干湿循环次数的变化曲线

    a. 抗剪强度; b. 黏聚力; c. 内摩擦角

    Figure  5.  Shear strength curve of soil under the condition of dry-wet cycle

    图  6  土体干缩裂缝随干湿循环次数的变化

    Figure  6.  The relationship between the dry shrinkage cracks of soil and the number of dry-wet cycles

    图  7  土体开裂表观裂隙率与干湿循环次数的关系曲线

    Figure  7.  Relationship between apparent crack rate of soil cracking and dry-wet cycles

    图  8  代表性元素的密度变化量随干湿循环次数的变化曲线

    a. Si; b. Al; c. Ca; d. P; e. Na; f. C

    Figure  8.  Variation curve of density of representative elements with the number of dry wet cycles

    图  9  生活源污染质降解终端产物对土体进行干湿循环作用机理

    a. 相互关系; b. 自然蒸发过程; c. 渗流过程

    Figure  9.  Mechanism of dry-wet cycle of end products of degradation of pollutants from domestic sources on soil

    表  1  未污染土体基本性质指标

    Table  1.   Basic properties of unpolluted soil

    天然含水率/% 液限/% 塑限/% 塑性指数/% 土体定名
    23.00 29.4 16.5 12.9 粉质黏土
    天然密度/g·cm-3 比重 最优含水率/% 最大干密度/g·cm-3
    1.642 2.811 20.7 1.80
    下载: 导出CSV

    表  2  黏土矿物相对含量

    Table  2.   Relative content of clay minerals

    高岭石/% 伊利石/% 蒙脱石/% 伊蒙混层/% 绿泥石/%
    17.00 36.00 14.00 27.00 6.00
    下载: 导出CSV
  • Bao C G. 2004. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 26 (1): 1-15.
    Basma A A, AI-Homoud A S, Husein Malkawi A I, et al. 1996. Swelling-shrinkage behavior of natural expansive clays[J]. Applied Clay Science, 11(2-4): 211-227. doi: 10.1016/S0169-1317(96)00009-9
    Cai N. 2019. Soil properties and element migration characteristcs of living source pollutants under dry-wet cycle[D]. Xuzhou: China University of Mining and Technology.
    Cao L W. 2007. Research on geotechincal behaviors of liner system influenced by leachate[D]. Xuzhou: China University of Mining and Technology.
    Chen X H, Tang H M. 2003. The current situation and prospect of contaminated soil research[J]. Geology and Prospecting, 39 (1): 77-80.
    Cook E E, Purl V K, Shin F C. 1992. Geotechnical characteristics of crude oil-contaminated sands[C]//Proceedings of the 2nd International Offshore and Polar Engineering Conference. San Francisco, CA, United states: International Society of Offshore and Polar Engineerns.
    Elisha A T. 2012. The effect of temperature on the geotechnical properties of crude oilcontaminated soft clay soils[J]. Electronic Journal of Geotechnical Engineering, 17 : 1981-1991.
    Hu S S, Chen C. 2019. Analysis on identification and quality evaluation of groundwater pollutants in domestic waste landfill site[J]. Smart City Application, 2 (8): 79-81.
    Jia J L, Liu Y, Li G H, et al. 2009. Contamination characteristics and its relationship with physicochemical properties of oil polluted soils in oilfields of China[J]. CIESC Journal, 60 (3): 726-732.
    Kermani M, Ebadi T. 2012. The effect of oil contamination on the geotechnical properties of fine-grained soils[J]. Soil and Sediment Contamination, 21 (5): 655-671. doi: 10.1080/15320383.2012.672486
    Khamehchiyan M, Charkhabi A H, Tajik M. 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils[J]. Engineering Geology, 89(3-4): 220-229. doi: 10.1016/j.enggeo.2006.10.009
    Khosravi E, Ghasemzadeh H, Sabour M R, et al. 2013. Geotechnical properties of gas oil-contaminated kaolinite[J]. Engineering Geology, 166 : 11-16. doi: 10.1016/j.enggeo.2013.08.004
    Li M, Meng D J, Dong Y F, et al. 2018. Migration law of oil contamination in saline soil from inshore area[J]. Journal of Engineering Geology, 26 (6): 1473-1479.
    Liu G S, Kong L W, Guo A G, et al. 2007. Deformation behaviors of medium expansive soil embankment covered by lime-treated soils subjected to weather influence[J]. Rock and Soil Mechanics, 28 (7): 1397-1401.
    Lü H B, Zeng Z T, Zhao Y L, et al. 2009. Experimental studies of strength of expansive soil in drying and wetting cycle[J]. Rock and Soil Mechanics, 30 (12): 3797-3802.
    Mu H D, Deng Y H, Li R J. 2018. Experimental study on strength characteristics of loess at ground fissures in Xi'an under action of dry and wet cycle[J]. Journal of Engineering Geology, 26 (5): 1131-1138.
    Nasehi S A, Uromeihy A, Nikudel M R, et al. 2016. Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils[J]. Geotechnical and Geological Engineering, 34 (1): 333-345. doi: 10.1007/s10706-015-9948-7
    Rahman. 2010. Influence of oil contamination on geotechnical properties of basaltic residual soil[J]. American Journal of Applied Sciences, 7 (7): 954-961. doi: 10.3844/ajassp.2010.954.961
    Ratnaweera P. 2006. Shear strength and stress-strain behavior of contaminated soils[J]. Geotechnical Testing Journal, 29 (2): 133-140.
    Safehian H, Rajabi A M, Ghasemzadeh H. 2018. Effect of diesel-contamination on geotechnical properties of illite soil[J]. Engineering Geology, 241 : 55-63.
    Wang L C, Yuan S Q, Xing K J. 2010. The influence of petroleum contamination to engineering properties of sediment at the Yellow River estuary[J]. Periodical of Ocean University of China, 40 (1): 63-68.
    Wang M, Zhu X Y, Fu C X, et al. 2019. Simulation study on soil column of metal pollutant in leachate of household refuse[J]. Environmental Science and Technology, 32 (6): 29-34.
    Xue M, Xie J L. 2019. Characteristics of heavy metals and organic pollution in soil around MSW incineration plant in China[J]. Energy Saving of Nonferrous Metallurgy, 35 (4): 60-65.
    Yang H P, Zhang R, Zheng J L. 2006. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering, 28 (11): 1936-1941.
    Zhang Q, Lei T, Jia J Y, et al. 2018. A study on the impacts of heavy metal pollution on soil properties in Danyang region[J]. Journal of Engineering Geology, 26 (S1): 612-617.
    包承纲. 2004. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 26 (1): 1-15. doi: 10.3321/j.issn:1000-4548.2004.01.001
    蔡念. 2019. 生活源污染质干湿循环条件下土体性质与元素迁移特征[D]. 徐州: 中国矿业大学.
    曹丽文. 2007. 渗滤液影响衬垫系统土工性状研究[D]. 徐州: 中国矿业大学.
    陈先华, 唐辉明. 2003. 污染土的研究现状及展望[J]. 地质与勘探, 39 (1): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200301019.htm
    胡莎莎, 陈诚. 2019. 生活垃圾填埋场地下水污染物识别与质量评价探析[J]. 智能城市应用, 2 (8): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201509042.htm
    贾建丽, 刘莹, 李广贺, 等. 2009. 油田区土壤石油污染特性及理化性质关系[J]. 化工学报, 60 (3): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200903030.htm
    李敏, 孟德骄, 董一凡, 等. 2018. 石油污染物在滨海盐渍土中的迁移规律[J]. 工程地质学报, 26 (6): 1473-1479. doi: 10.13544/j.cnki.jeg.2017-457
    刘观仕, 孔令伟, 郭爱国, 等. 2007. 大气影响下膨胀土包边路堤变形性状研究[J]. 岩土力学, 28 (7): 1397-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200707020.htm
    吕海波, 曾召田, 赵艳林, 等. 2009. 膨胀土强度干湿循环试验研究[J]. 岩土力学, 30 (12): 3797-3802. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200912043.htm
    慕焕东, 邓亚虹, 李荣建. 2018. 干湿循环对地裂缝带黄土抗剪强度影响研究[J]. 工程地质学报, 26 (5): 1131-1138. doi: 10.13544/j.cnki.jeg.2018022
    王林昌, 袁守启, 邢可军. 2010. 石油污染对黄河口沉积物工程性质的影响[J]. 中国海洋大学学报(自然科学版), 40 (1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201001012.htm
    王敏, 朱歆莹, 付常喜, 等. 2019. 生活垃圾渗滤液金属污染物土柱模拟研究[J]. 环境技术, 32 (6): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ201906007.htm
    薛淼, 谢金亮. 2019. 我国城市生活垃圾焚烧厂周边土壤重金属和有机污染特征[J]. 有色冶金节能, 35 (4): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YJJN201904015.htm
    杨和平, 张锐, 郑健龙. 2006. 有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J]. 岩土工程学报, 28 (11): 1936-1941. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200611003.htm
    张庆, 雷廷, 贾军元, 等. 2018. 丹阳地区重金属污染对土体性质影响研究[J]. 工程地质学报, 26(增): 612-617 doi: 10.13544/j.cnki.jeg.2018164
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  21
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2021-03-05
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回