微生物诱导碳酸钙沉积技术改性黄土结构强度试验研究

程瑶佳 唐朝生 谢约翰 刘博 泮晓华

程瑶佳, 唐朝生, 谢约翰, 等. 2021.微生物诱导碳酸钙沉积技术改性黄土结构强度试验研究[J].工程地质学报, 29(1): 44-51. doi: 10.13544/j.cnki.jeg.2020-359
引用本文: 程瑶佳, 唐朝生, 谢约翰, 等. 2021.微生物诱导碳酸钙沉积技术改性黄土结构强度试验研究[J].工程地质学报, 29(1): 44-51. doi: 10.13544/j.cnki.jeg.2020-359
Cheng Yaojia, Tang Chaosheng, Xie Yuehan, et al. 2021. Experimental study on structure strength of loess improved by microbial induced calcite precipitation [J]. Journal of Engineering Geology, 29(1): 44-51. doi: 10.13544/j.cnki.jeg.2020-359
Citation: Cheng Yaojia, Tang Chaosheng, Xie Yuehan, et al. 2021. Experimental study on structure strength of loess improved by microbial induced calcite precipitation [J]. Journal of Engineering Geology, 29(1): 44-51. doi: 10.13544/j.cnki.jeg.2020-359

微生物诱导碳酸钙沉积技术改性黄土结构强度试验研究

doi: 10.13544/j.cnki.jeg.2020-359
基金项目: 

国家杰出青年科学基金项目 41925012

国家自然科学基金项目 42007244

国家自然科学基金项目 41772280

国家自然科学基金项目 41902271

详细信息
    作者简介:

    程瑶佳(1998-),女,硕士生,主要从事微生物地质工程方面的研究工作. E-mail: chengyaojia@smail.nju.edu.cn

    通讯作者:

    唐朝生(1980-),男,博士,教授,主要从事环境岩土工程和工程地质方面的教学和研究工作. E-mail: tangchaosheng@nju.edu.cn

  • 中图分类号: P642.3

EXPERIMENTAL STUDY ON STRUCTURE STRENGTH OF LOESS IMPROVED BY MICROBIAL INDUCED CALCITE PRECIPITATION

Funds: 

the National Science Fund for Distinguished Young Scholars 41925012

Natural Science Foundation of China 42007244

Natural Science Foundation of China 41772280

Natural Science Foundation of China 41902271

  • 摘要: 我国黄土地区的水土流失和地质灾害问题异常严重,这主要与黄土较差的工程地质性质有关。提出采用微生物诱导碳酸钙沉积(MICP)技术对黄土进行改性处理,以改善其力学性质。采用喷洒法的方式将制备好的微生物菌液和胶结液依次喷洒在土样表面进行MICP处理,基于贯入试验和碳酸钙含量测定试验,分析不同MICP胶结轮次(3次、5次、7次)和胶结液浓度(0.5 M、1 M、1.5 M)对MICP胶结土样结构强度和碳酸钙含量的影响。结果表明:(1)MICP技术能显著提高黄土的结构强度,并在黄土表面形成一层高强度的硬化壳;(2)随着胶结轮次增加,土体的硬化壳强度和厚度、内部强度逐渐增大,碳酸钙含量也随之增高;(3)胶结液浓度对MICP改性效果影响显著,1.0 M胶结液浓度的处理效果最好,其表层结构强度最高可达600 kPa,内部完整性好,1.5 M的次之,仅在表面形成较薄的硬化壳,内部强度低,0.5 M胶结液浓度处理的土体力学性质改良不明显;(4)MICP改善黄土结构强度的作用机理主要是微生物诱导生成的碳酸钙胶结土颗粒,极大提升土颗粒之间的联接强度,从而显著改善土体的力学特性。
  • 图  1  制备样品示意图

    Figure  1.  Schematic diagrams of sample preparation

    图  2  SMP-1超微型贯入仪示意图

    Figure  2.  Schematic diagrams of SMP-1 super mini-penetrometer

    图  3  超微型贯入仪微型探针示意图

    Figure  3.  Schematic diagrams of super mini-penetrometer's micro-probe

    图  4  酸洗排水法测试土样中碳酸钙含量装置图

    Figure  4.  Installation diagram of pickling drainage method for measuring calcium carbonate content of soil sample

    图  5  不同胶结轮次处理的试样结构强度-深度曲线

    Figure  5.  Structure strength-depth curve of samples treated by different MICP treatment cycles

    图  6  不同胶结液浓度处理的试样结构强度-深度曲线

    Figure  6.  Structure strength-depth curve of samples treated by different cementation solution concentrations

    图  7  不同胶结轮次和胶结液浓度处理的试样碳酸钙含量

    Figure  7.  Calcium carbonate content of samples treated by different MICP treatment cycles and cementation solution concentrations

    图  8  MICP处理前(a)和MICP处理后(b)的土体内部相互作用机制示意图

    Figure  8.  Schematic diagrams of interaction mechanism in soil before MICP treatment(a) and after MICP treatment(b)

    表  1  黄土的物理力学性质

    Table  1.   Physical and mechanical properties of loess

    液限/% 塑限/% 塑性指数 液性指数 最佳含水量/% 最大干密度/g·cm-3 颗粒密度/g·cm-3 天然含水量/% 干密度/g·cm-3
    25.82 16.65 10.17 0.29 15.30 1.91 2.65 12.77 1.42
    下载: 导出CSV

    表  2  试验计划

    Table  2.   Test program

    编号 是否MICP处理 胶结液浓度/M 胶结轮次/次
    A0 / /
    A1 1.0 3
    A2 1.0 5
    A3 1.0 7
    A4 0.5 7
    A5 1.0 7
    A6 1.5 7
    下载: 导出CSV
  • Al Qabany A, Soga K. 2013. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 63(4): 331-339. doi: 10.1680/geot.SIP13.P.022
    An S S, Darboux F, Cheng M. 2013. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau(China)[J]. Geoderma, 209-210: 75-85. doi: 10.1016/j.geoderma.2013.05.020
    Chen L D, Song Z W. 2020. Mechanical properties of solidified loess mixed with CaO-modified red mud curing agent[J]. Bulletin of The Chinese Ceramic Society, 39(1): 213-218.
    Cheng L, Cord-Ruwisch R, Shahin M A. 2013. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 50(1): 81-90. doi: 10.1139/cgj-2012-0023
    Gao G R. 1980. Microstructure classification and collapsibility of loess[J]. China Science, (12): 1203-1208, 1237-1240.
    Gao Y, Ma Y X, Zhang W Y, et al. 2019. Analysis of humidifying deformation characteristics and microstructure of loess in Xining Area[J]. Journal of Engineering Geology, 27(4): 803-810.
    Hu Z Q, Liang Z C, Wu C Y, et al. 2019. Experimental study on mechanical properties of lime modified loess under freeze-thaw cycle[J]. China Civil Engineering Journal, 52 (S1): 211-217.
    Jiang N J, Tang C S, Yin L Y, et al. 2019. Applicability of microbial calcification method for sandy-slope surface erosion control[J]. Journal of Materials in Civil Engineering, 31(11): 04019250. doi: 10.1061/(ASCE)MT.1943-5533.0002897
    Kunst F, Rapoport G. 1995. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. Journal of Bacteriology, 177(9): 2403-2407. doi: 10.1128/JB.177.9.2403-2407.1995
    Li X A, Huang R Q, Peng J B. 2009. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering, 28(S1): 3207-3213.
    Liang S H, Zeng W H, Gong X, et al. 2020. Influence of partical gradation on mechanical properties of MICP-treated sand[J]. Yangtze River, 51(2): 179-183.
    Liu B, Zhu C, Tang C S, et al. 2020. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation(MICP)[J]. Engineering Geology: 105389.
    Liu D S, Zhang Z G. 1962. Loess of China[J]. Acta Geological Sinica, 42(1): 1-14.
    Liu G B, Li M, Shangguan Z P, et al. 2008. Current status and comprehensive control strategies of soil erosion for loess region in the Northwestern China[J]. Science of Soil and Water Conservation, 6(1): 16-21.
    Niu P Y, Zhuang J Q, Jia K C, et al. 2020. Study on properties of loess solidified by polyacrylate sodium[J/OL]. Journal of Engineering Geology, [2020-06-03]. http://kns.cnki.netkcmsdetail/11.3249.P.20200603.1145.014.html.
    Pan Z X, Yang G S, Ye W J, et al. 2020. Study on mechanical properties and microscopic damage of undisturbed loess under dry and wet cycles[J]. Journal of Engineering Geology, 28(6): 1186-1192.
    Seagren E A, Aydilek A H. 2010. Biomediated geomechanical processes. In Environmental microbiology[M]//Environmental microbiology. 2nd ed. John Wiley & Sons, Inc: 319-348.
    Shi B, Liu Z B, Cai Y. 2005. Development of the super mini-penetrometer and its application[J]. Rock and Soil Mechanics, 26(8): 1211-1215.
    Soon N W, Lee L M, Khun T C, et al. 2014. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 140(5): 04014006. doi: 10.1061/(ASCE)GT.1943-5606.0001089
    Tang C S, Shi B. 2011. Swelling and shrinkage behaviour of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 33(9): 1376-1384.
    Van Paassen L A, Daza C M, Staal M, et al. 2009. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 36(2): 168-175.
    Van Paassen L A. 2009. Biogrout, ground improvement by microbial induced carbonate precipitation[D]. Arizona, USA: Arizona State University.
    Wang X M, Guo W, Yu F, et al. 2016. Experimental study of effect of nutrient concentration on physico-mechanical properties of cemented sand[J]. Rock and Soil Mechanics, 37 (S2): 363-368, 374.
    Wu G H, Wang J D, Ma W, et al. 2016. Uniaxial compression and SEM tests for loess collapsibility at loess plateau of Xifeng[J]. Journal of Engineering Geology, 24(1): 102-108.
    Xie Y H, Tang C S, Liu Bo, et al. 2019. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of Zhejiang University(Engineering Science), 53(8): 1438-1447.
    Xu D, Tang C S, Leng T, et al. 2018. Shear strength of unsaturated expansive soil during wetting-drying cycles[J]. Earth Science Frontiers, 25(1): 286-296.
    Xu K, Jin G X, Liu Z J, et al. 2020. Model test of multi-layer porous microbial grouting in soft rock fillings[J]. Journal of Engineering Geology, 28(4): 697-706.
    Yin A H, Chen C F, Shi G. 2010. New progress in loess studies in China[J]. Economic Research Guide, (2): 248-250.
    Zhang K, Tang C S, Liu B, et al. 2020. Mechanical behavior of clayey soil treated by new one-phase MICP technique[J]. Journal of Engineering Geology, 28(2): 306-316.
    陈立东, 宋志伟. 2020. CaO改性赤泥固化剂固化黄土的力学性能研究[J]. 硅酸盐通报, 39(1): 213-218.
    高国瑞. 1980. 黄土显微结构分类与湿陷性[J]. 中国科学, (12): 1203-1208, 1237-1240.
    高英, 马艳霞, 张吾渝, 等. 2019. 西宁地区黄土增湿变形特性及微观结构分析[J]. 工程地质学报, 27(4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416
    胡再强, 梁志超, 吴传意, 等. 2019. 冻融循环作用下石灰改性黄土的力学特性试验研究[J]. 土木工程学报, 52(S1): 211-217.
    李喜安, 黄润秋, 彭建兵. 2009. 黄土崩解性试验研究[J]. 岩石力学与工程学报, 28(S1): 3207-3213.
    梁仕华, 曾伟华, 龚星, 等. 2020. 颗粒级配对微生物固化砂土力学性能的影响[J]. 人民长江, 51(2): 179-183.
    刘东生, 张宗祜. 1962. 中国的黄土[J]. 地质学报, 42(1): 1-14.
    刘国斌, 李敏, 上官周平, 等. 2008. 西北黄土区水土流失现状与综合治理对策[J]. 中国水土保持科学, 6(1): 16-21. doi: 10.3969/j.issn.1672-3007.2008.01.003
    牛鹏尧, 庄建琦, 贾珂程, 等. 2020.聚丙烯酸钠混合剂固化黄土特性研究[J/OL].工程地质学报, [2020-06-03]. http://kns.cnki.netkcmsdetail/11.3249.P.20200603.1145.014.html.
    潘振兴, 杨更社, 叶万军, 等. 2020. 干湿循环作用下原状黄土力学性质及细观损伤研究[J]. 工程地质学报, 28(6): 1186-1192. doi: 10.13544/j.cnki.jeg.2019-423
    施斌, 刘志彬, 蔡奕. 2005. 超微型贯入仪的研制及其应用[J]. 岩土力学, 26(8): 1211-1215. doi: 10.3969/j.issn.1000-7598.2005.08.031
    唐朝生, 施斌. 2011. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报, 33(9): 1376-1384.
    王绪民, 郭伟, 余飞, 等. 2016. 营养盐浓度对胶结砂试样物理力学特性试验研究[J]. 岩土力学, 37 (S2): 363-368, 374.
    吴光辉, 王家鼎, 马威, 等. 2016. 西峰塬黄土的湿陷性研究[J]. 工程地质学报, 24(1): 102-108. doi: 10.13544/j.cnki.jeg.2016.01.013
    谢约翰, 唐朝生, 刘博, 等. 2019. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 53(8): 1438-1447.
    徐丹, 唐朝生, 冷挺, 等. 2018. 干湿循环对非饱和膨胀土抗剪强度影响的试验研究[J]. 地学前缘, 25(1): 286-296.
    许凯, 靳贵晓, 刘子健, 等. 2020. 软岩填筑体多层多孔微生物灌浆室内模型试验研究[J]. 工程地质学报, 28(4): 697-706. doi: 10.13544/j.cnki.jeg.2019-456
    尹爱华, 陈翠峰, 石敢. 2010. 中国黄土研究的新进展[J]. 经济研究导刊, (2): 248-250. doi: 10.3969/j.issn.1673-291X.2010.02.103
    张宽, 唐朝生, 刘博, 等. 2020. 基于新型单相MICP技术改性黏性土力学特性的试验研究[J]. 工程地质学报, 28 (2): 306-316. doi: 10.13544/j.cnki.jeg.2019-528
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  204
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-08-09
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回