基于地震动信号分析的地质灾害过程重构方法研究与应用

严炎 崔一飞 周开来 尹述遥 田鑫 田继枫

严炎,崔一飞,周开来,等. 2021. 基于地震动信号分析的地质灾害过程重构方法研究与应用[J]. 工程地质学报, 29(1): 125-136. doi: 10.13544/j.cnki.jeg.2020-478
引用本文: 严炎,崔一飞,周开来,等. 2021. 基于地震动信号分析的地质灾害过程重构方法研究与应用[J]. 工程地质学报, 29(1): 125-136. doi: 10.13544/j.cnki.jeg.2020-478
Yan Yan, Cui Yifei, Zhou Kailai, et al. 2021. Research and application of geological hazards process reconstruction based on seismic signal analysis[J]. Journal of Engineering Geology, 29(1): 125-136. doi: 10.13544/j.cnki.jeg.2020-478
Citation: Yan Yan, Cui Yifei, Zhou Kailai, et al. 2021. Research and application of geological hazards process reconstruction based on seismic signal analysis[J]. Journal of Engineering Geology, 29(1): 125-136. doi: 10.13544/j.cnki.jeg.2020-478

基于地震动信号分析的地质灾害过程重构方法研究与应用

doi: 10.13544/j.cnki.jeg.2020-478
基金项目: 

国家重点研发计划 2018YFC1505201

国家自然科学基金 41901008

详细信息
    作者简介:

    严炎(1989-),男,博士,讲师,硕士生导师,主要从事地质灾害监测与预警研究工作. E-mail:yanyanyale@foxmail.com

    通讯作者:

    崔一飞(1986-),男,博士,副教授,博士生导师,主要从事复合链生工程地质灾害机理研究工作. E-mail:yifeicui@mail.tsinghua.edu.cn

  • 中图分类号: P642.22

RESEARCH AND APPLICATION OF GEOLOGICAL HAZARDS PROCESS RECONSTRUCTION BASED ON SEISMIC SIGNAL ANALYSIS

Funds: 

the National Key R & D Program of China 2018YFC1505201

the National Natural Science Foundation of China 41901008

  • 摘要: 地质灾害启动及演进过程中对途经的村庄、植被、基础设施等均会造成不同程度的破坏,而深入研究灾害的演进过程有助于灾害预警和防治工作,能减少灾区人员伤亡、降低经济损失。然而由于地质灾害的强破坏性和突发性,使得现场的监测仪器和设备易受灾害的影响,甚至被破坏,导致难以完整且准确地监测到灾害过程,这限制了对地质灾害过程的深入研究,因此亟需一种新的方法来进行灾害过程的重构。随着科技的发展,现有高精度地震仪能够记录伴随地质灾害而产生的地震动信号,并且已有不少研究者进行了基于地震动信号的灾害分析研究。基于现有研究的基础,本文提出一套基于地震动信号的地质灾害重构研究思路和方法体系:通过运用带通滤波器(BP-filter)、经验模态分解(EMD)、快速傅里叶变换(FFT)、短时傅里叶变换(STFT)、功率谱密度计算(PSD)等方法对灾害过程产生的地震动信号进行处理和分析,然后结合灾害现场调查结果进行对比分析以反演灾害的基本特征,进而与数值模拟结果进行耦合,最终实现灾害过程的重构。本文基于地震动信号对堰塞湖、滑坡、泥石流等不同灾种进行案例研究与分析,旨在为地质灾害演进过程的研究提供一种新的研究思路和方法体系。
  • 图  1  基于地震动信号的灾害过程重构流程图

    Figure  1.  Flow chart of hazards process reconstruction based on seismic signal process

    图  2  堰塞湖溃决原位实验概况图

    a. 实验区域示意图;b. 传感器布设示意图;c. 上游堰塞坝体与下游堰塞坝体正视图

    Figure  2.  Overview of large-scale dammed lake bursting physical modelling

    图  3  EMD处理后得到的IMF分量图

    Figure  3.  IMF component diagram obtained after EMD processing

    图  4  FFT处理后得到的频谱

    Figure  4.  Spectrum obtained after FFT processing

    图  5  地震动信号的STFT时频谱

    Figure  5.  STFT time-frequency spectrum of seismic signal

    图  6  堰塞湖溃决过程STFT时频谱(0~50 Hz)

    a. 第1阶段(溃决之前);b. 第2阶段(溃决时);c. 第3阶段(溃决之后趋于稳定)

    Figure  6.  STFT time-frequency spectrum in the process of dammed lake failure

    图  7  地震动信号各频带能量与影像对比图

    a. 低频成分(0~1.5 Hz)能量与影像对比图;b. 中频成分(1.5~10 Hz)能量与影像对比图;c~d. 高频成分(10~45 Hz)功率谱密度与水位变化对比图(颜色由蓝色变为黄色表示取样点的时间先后顺序)

    Figure  7.  Energy of each frequency band of seismic signal and corresponding site pictures

    图  8  滑坡位置概况示意图

    a. 新磨滑坡地理位置及地震台站分布图;b. 水城滑坡地理位置及地震台站分布图

    Figure  8.  Schematic diagram of landslide location overview

    图  9  新磨滑坡地震动信号处理结果图

    a. EMD分解后得到的MXI台站IMF4成分结果图;b. MXI台站FFT频谱;c. MXI台站STFT时频谱

    Figure  9.  Seismic signal processing result figure of Xinmo landslide

    图  10  水城滑坡地震动信号处理结果图(4.5~6 Hz)

    a. EMD处理后得到的XUW台站IMF1成分结果图;b. XUW台站FFT频谱;c. XUW台站STFT时频谱;d. XUW台站PSD功率谱密度图

    Figure  10.  Seismic signal processing result diagram of Shuicheng landslide(4.5~6 Hz)

    图  11  东川泥石流地震动信号监测位置及时频谱

    a. 地震动信号监测位置照片;b. 监测设备现场布置照片;c. 地震动信号时域曲线;d. 地震动信号FFT频谱;e. 地震动信号STFT时频谱

    Figure  11.  Monitoring location and time-frequency spectrum of Dongchuan debris flow seismic signal

  • Arattano M. 1999. On the use of seismic detectors as monitoring and warning systems for debris flows[J]. Natural Hazards, 20(2-3): 197-213. doi: 10.1023/A:1008061916445
    Burtin A, Hovius N, Turowski J M. 2016. Seismic monitoring of torrential and fluvial processes[J]. Earth Surface Dynamic, 4(2): 285-307. doi: 10.5194/esurf-4-285-2016
    Chen T C, Lin M L, Wang K L. 2014. Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan[J]. Engineering Geology, 171: 31-44. doi: 10.1016/j.enggeo.2013.11.018
    Cui P, Wei F Q, He S M, et al. 2008. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Journal of Mountain Science, 26(3): 280-282. doi: 10.1002/clen.200700058
    Dammeier F, Moore J R, Haslinger F, et al. 2011. Characterization of alpine rockslides using statistical analysis of seismic signals[J]. Journal of Geophysical Research, 116(F4). doi: 10.1029/2011JF002037
    Deng H. 2007. Application on investigation and evaluation of geohazard by high-precision satellite remote sensing technique[D]. Chengdu: Chengdu University of Technology.
    Fan X M, Xu Q, Scaringi G, et al. 2017. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China[J]. Landslides, 14 (3): 2129-2146.
    Farin M, Mangeney A, Toussaint R, et al. 2015. Characterization of rockfalls from seismic signal: Insights from laboratory experi ments[J]. Journal of Geophysical Research: Solid Earth, 120(10): 7102-7137. doi: 10.1002/2015JB012331
    Feng Z Y. 2012. The seismic signatures of the surge wave from the 2009 Xiaolin landslide-dam breach in Taiwan[J]. Hydrological Processes, 26(9): 1342-1351. doi: 10.1002/hyp.8239
    Han J J, van der Baan M. 2013. Empirical mode decomposition for seismic time-frequency analysis[J]. Geophysics, 78(2):9-19. doi: 10.1190/geo2012-0199.1
    He Q L. 2019. Visual simulation of mountain landslide process based on multi-source and multi-temporal remote sensing data[D]. Chengdu: Southwest Jiaotong University.
    Hibert C, Ekström G, Stark C P. 2014. Dynamics of the Bingham canyon mine landslides from seismic signal analysis[J]. Geophysical Research Letters, 41(13): 4535-4541. doi: 10.1002/2014GL060592
    Hibert C, Mangeney A, Grandjean G, et al. 2011. Slope instabilities in Dolomieu crater, Réunion Island: from seismic signals to rockfall characteristics[J]. Journal of Geophysical Research: Earth Surface, 116(F4): 4032. doi: 10.1029/2011JF002038
    Hu Y X, Yu Z Y, Zhou J W. 2020. Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River[J]. Landslides, 1-12. doi: 10.1007/s10346-020-01382-x
    Huang R Q. 2009. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249. doi: 10.1002/9780470611807.ch2
    Huang Y, Zhang W, Xu Q, et al. 2012. Run-out analysis of flow-like landslides triggered by the MS8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 9(2): 275-283. doi: 10.1007/s10346-011-0285-5
    Lai V H, Tsai V C, Lamb M P, et al. 2018. The seismic signature of debris flows: Flow mechanics and early warning at Montecito, California[J]. Geophysical Research Letters, 45(11): 5528-5535. doi: 10.1029/2018GL077683
    Liu C, Fan X M, Zhu C G, et al. 2019. Discrete element modeling and simulation of 3-Dimensional large-scale landslide-Taking Xinmocun landslide as an example[J]. Journal of Engineering Geology, 27(6): 1362-1370.
    Liu M B, Liu G R. 2010. Smoothed particle hydrodynamics(SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 17(1): 25-76.
    Liu M B, Zong Z, Chang J Z. 2011. Development and application of smooth particle hydrodynamics[J]. Advances in Mechanics, 41 (2): 217-234.
    Liu N H, Gao J H, Jiang X D, et al. 2016. Seismic time-frequency analysis via STFT-based concentration of frequency and time[J]. IEEE Geoscience and Remote Sensing Letters, 14(1): 127-131.
    Martin R. 2001. Noise power spectral density estimation based on optimal smoothing and minimum statistics[J]. IEEE Transactions on Speech and Audio Processing, 9(5): 504-512. doi: 10.1109/89.928915
    Meng W L, Xu Y S, Cheng W C, et al. 2018. Landslide event on 24 June in Sichuan Province, China: Preliminary investigation and analysis[J]. Geosciences, 8(2): 39. doi: 10.3390/geosciences8020039
    Moretti L, Mangeney A, Capdeville Y, et al. 2012. Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves[J]. Geophysical Research Letters, 39(16).
    Nussbaumer H J. 1981. The fast Fourier transform[M]//Fast Fourier Transform and Convolution Algorithms. Berlin, Heidelberg: Springer: 80-111.
    Ouyang C, An H, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides, 16(7): 1397-1414. doi: 10.1007/s10346-019-01177-9
    Schimmel A, Hübl J. 2016. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals[J]. Landslides, 13(5): 1181-1196. doi: 10.1007/s10346-015-0640-z
    Stein R A, Bartley N R. 1983. Continuously time-variable recursive digital band-pass filters for seismic signal processing[J]. Geophysics, 48(6): 702-712. doi: 10.1190/1.1441500
    Su P C, Wei F Q, Feng H Z, et al. 2011. "8·13"Causes and effects of group-occurring debris flow disasters in Qingping town, Mianyuan river upstream, Sichuan[J]. Journal of Mountain Sciences, 29(3): 337-347.
    Tsai V C, Minchew B, Lamb M P, et al. 2012. A physical model for seismic noise generation from sediment transport in rivers[J]. Geophysical Research Letters, 39(2):2404. doi: 10.1029/2011gl050255
    Vilajosana I, Surinach E, Abellán A, et al. 2008. Rockfall induced seismic signals: case study in Montserrat, Catalonia[J]. Natural Hazards and Earth System Sciences, 8(4): 805-812. doi: 10.5194/nhess-8-805-2008
    Wang L C. 2019. "July 23"landslide in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 30(4): 8.
    Xu Q, Dong X J, Li W L. 2019. Integrated space-air-ground early detection, moitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 44(7): 957-966. http://en.cnki.com.cn/Article_en/CJFDTotal-WHCH201907002.htm
    Xu Q, Li W L, Dong X J, et al. 2017. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2612-2628. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201711002.htm
    Xu Q. 2010. The 13 August 2010 catastrophic debris flows in Sichuan province: characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 18(5): 596-608. doi: 10.3724/SP.J.1231.2010.06586
    Xu Q. 2020. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 45 (11): 1651-1659.
    Yan Y, Cui P, Chen S C, et al. 2017. Characteristics and interpretation of the seismic signal of a field-scale landslide dam failure experiment[J]. Journal of Mountain Science, 14(2): 219-36. doi: 10.1007/s11629-016-4103-3
    Yan Y, Cui Y F, Guo J, et al. 2020a. Landslide reconstruction using seismic signal characteristics and numerical simulations: Case study of the 2017 "6.24" Xinmo landslide[J]. Engineering Geology, 270.
    Yan Y, Cui Y F, Tian X, et al. 2020b. Seismic signal recognition and interpretation of the 2019 "7.23" Shuicheng landslide by seismogram stations[J]. Landslides, 17(5): 1191-206. doi: 10.1007/s10346-020-01358-x
    Yin Y P. 2008. Research on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. doi: 10.1016/S1872-5791(08)60056-1
    Zeng Q L, Wei R Q, Xue X Y, et al. 2018. Characteristics and runout mechanism of super-large Xinmo rock avalanche-debris flow in Diexi, Sichuan province[J]. Journal of Engineering Geology, 26(1): 193-206.
    Zheng G, Xu Q, Liu X W, et al. 2020. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 28(3): 541-556.
    Zheng Y R, Zhao S Y. 2005. Limit state finite element method for geotechnical engineering analysis and its applications[J]. China Civil Engineering Journal, 38 (1): 91-98, 104. doi: 10.1360/biodiv.050084
    Zhou L, Fan X M, Xu Q, et al. 2019. Numerical simulation and hazard prediction on movement process charactersitics of Baige landslide in Jinsha river[J]. Journal of Engineering Geology, 27(6): 1395-1404.
    Zienkiewicz O C, Taylor R L, Zhu J Z. 2005. The finite element method: its basis and fundamentals[M]. Spain: CIMNE.
    崔鹏, 韦方强, 何思明, 等. 2008.5·12汶川地震诱发的山地灾害及减灾措施[J]. 山地学报, 26 (3): 280-282. doi: 10.3969/j.issn.1008-2786.2008.03.006
    邓辉. 2007. 高精度卫星遥感技术在地质灾害调查与评价中的应用[D]. 成都: 成都理工大学.
    何秋玲. 2019. 基于多源多时相遥感数据的山体滑坡过程可视化模拟[D]. 成都: 西南交通大学.
    黄润秋. 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
    刘春, 范宣梅, 朱晨光, 等. 2019. 三维大规模滑坡离散元建模与模拟研究——以茂县新磨村滑坡为例[J]. 工程地质学报, 27(6):1362-1370. doi: 10.13544/j.cnki.jeg.2018-234
    刘谋斌, 宗智, 常建忠. 2011. 光滑粒子动力学方法的发展与应用[J]. 力学进展, 41(2): 217-234. doi: 10.6052/1000-0992-2011-2-lxjzj2010-078
    苏鹏程, 韦方强, 冯汉中, 等. 2011. "8·13"四川清平群发性泥石流灾害成因及其影响[J]. 山地学报, 29(3): 337-347. doi: 10.3969/j.issn.1008-2786.2011.03.011
    王立朝. 2019. 贵州水城"7·23"特大山体滑坡[J]. 中国地质灾害与防治学报, 30(4): 8.
    许强, 董秀军, 李为乐. 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 44(7): 957-966. doi: 10.13203/j.whugis20190088
    许强, 李为乐, 董秀军, 等. 2017. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 36(11): 2612-2628.
    许强. 2010. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 18(5): 596-608. doi: 10.3969/j.issn.1004-9665.2010.05.002
    许强. 2020. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 45(11): 1651-1659. http://www.gcdz.org/article/id/8604
    殷跃平. 2008. 汶川8级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001
    曾庆利, 魏荣强, 薛鑫宇, 等. 2018. 茂县新磨特大滑坡-碎屑流的发育特征与运移机理[J]. 工程地质学报, 26(1): 193-206. doi: 10.13544/j.cnki.jeg.2018.01.021
    郑光, 许强, 刘秀伟, 等. 2020.2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 28(3): 541-556. doi: 10.13544/j.cnki.jeg.2020-083
    郑颖人, 赵尚毅. 2005. 岩土工程极限分析有限元法及其应用[J]. 土木工程学报, (381): 91-98, 104. doi: 10.3321/j.issn:1000-131X.2005.01.012
    周礼, 范宣梅, 许强, 等. 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报, 27(6): 1395-1404. doi: 10.13544/j.cnki.jeg.2019-037
  • 加载中
图(11)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  229
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2021-01-07
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回