ANALYSIS OF SEISMIC RESPONSE TO GENTLE STEPPED ROCK SLOPE
-
摘要: 川南中低山地区近水平岩层侵蚀台地阶状斜坡普遍发育且主要为居住区,研究这类阶状斜坡的地震动响应对揭示珙县地区震后崩塌山体灾害发育的动力机理有一定意义。宜宾地震后余震频发,安置在珙县五同村斜坡不同位置的强震监测仪于2020年9月6日成功监测到MS3.1级余震,通过各监测点之间实测地震动数据相应的比较发现:与位于一级台阶处的参考监测点相比,二级台阶上的监测点在地震荷载作用下的地震动峰值加速度(PGA)和Arias强度放大系数、岩性共振周期比值均大于1.00,说明特殊斜坡具有较为显著的地震动高程放大效应和岩性选频放大效应;由于陡崖附近节理、裂隙较为发育,二级台阶中后部监测点地震动PGA、Arias强度比同台阶近陡崖监测点缩小了1.73、2.20倍,表明阶状斜坡存在近陡崖效应;二级台阶中后部(凸起地形)地震动持时是一级台阶参考监测点(凹陷地形)地震动持时的1.25倍,阶状斜坡存在微地形地震动持时放大效应。Abstract: It is of great significance to analyze the seismic shaking conditions of coseismic rock avalanches in Gong County area. The area is just located in gentle stepped rock slope of hilly area of south Sichuan Province. A set of seismic stations,located into Wutong village of Gong County,captured a MS3.1 earthquake. Based on the captured seismic data,a series of analysis are carried out. The results show the upper stepped rock mass can produce larger site amplification and resonance amplification than the lower stepped rock. Due to the development of fissures and joints in cliff,the PGA and Arias of inner section of the upper stepped rock reduced 1.73 and 2.20 compared to the cliff section. This indicates that cliff exists site amplification effect. The seismic duration of the inner section of the upper stepped rock(convex terrain) is 1.25 times of the referred point(the lower stepped rock and the concave terrain). This indicates that micro topography has seismic duration amplification.
-
表 1 长宁地震典型余震基本信息
Table 1. The basic information of the aftershocks
日期 时间 纬度/(°) 经度/(°) 深度/km 震中距/km 震级 2020-08-05 09:04:06 28.18 105.06 8.0 23.0 3.1 2020-08-06 17:08:13 28.41 104.85 10.0 20.0 3.9 2020-08-11 13:41:48 28.16 105.06 9.0 24.0 3.8 2020-08-14 00:30:31 28.16 105.07 9.0 24.6 3.1 2020-08-17 12:43:33 28.17 104.74 8.0 11.1 3.0 2020-08-21 17:27:03 28.15 104.82 8.0 8.9 3.0 2020-08-22 13:36:36 28.19 104.83 8.0 4.5 3.2 表 2 监测点所在位置场地属性
Table 2. Properties of each monitoring site
监测点编号 绝对高程/m 监测点所在部位 场地类型 岩层产状 场地坐标 1# 675 一级台阶 砂岩 160°∠4° 28°13′29.80″N,104°49′30.32″E 2# 899 二级台阶陡崖附近 灰岩 190°∠6° 28°13′23.46″N,104°49′41.19″E 3# 910 二级台阶中后部 灰岩 120°∠6° 28°13′19.70″N,104°49′53.09″E 表 3 监测点地震动加速度时程曲线
Table 3. Monitoring graph of the earthquake of each monitoring site
EW SN UD 1#监测点(砂岩,海拔675 m) 2#监测点(灰岩,海拔899 m) 3#监测点(灰岩,海拔910m) 表 4 监测点地震动时程傅里叶振幅谱
Table 4. Fourier spectrum of the earthquake of each monitoring site
EW SN UD 1#监测点(砂岩,海拔675 m) 2#监测点(灰岩,海拔899 m) 3#监测点(灰岩,海拔910 m) 表 5 监测点地震动加速度反应谱
Table 5. Acceleration response spectrum of the earthquake of each monitoring site
EW SN UD 1#监测点(砂岩,海拔675 m) 2#监测点(灰岩,海拔899 m) 3#监测点(灰岩,海拔910m) 表 6 监测点地震动峰值加速度放大系数
Table 6. Amplification factors of PGA
监测点 场地类别 PGA/(×10-2 m·s-2) 放大系数 EW SN UD EW SN UD 1# 砂岩 3.2 2.2 1.3 1.00 1.00 1.00 2# 灰岩 3.6 3.2 3.8 1.13 1.45 2.92 3# 灰岩 4.0 3.6 2.2 1.25 1.63 1.69 表 7 监测点地震动Arias强度放大系数
Table 7. Amplification factors of Arias intensity
监测点 场地类别 AI/(×10-5 m·s-1) 放大系数 EW SN UD EW SN UD 1# 砂岩 5.0 5.0 2.0 1.00 1.00 1.00 2# 灰岩 1.3 1.5 1.1 2.60 3.00 5.50 3# 灰岩 1.4 1.1 5.0 2.80 2.20 2.50 -
Cheng G P,Wen L H,Wang S. 2011. Comparisons of various characteristic parameters of strong motions[J]. South China Journal of Seismology,31 (2): 45-53.1. Cui S H, Pei X J, Huang R Q, et al. 2019. Geological features and causes of the Wenchuan earthquake triggered large landslides on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 27 (2): 437-450. Hou H J. 2013. The seismic dynamic response characteristics of the shaking table test on horizontally layered slope[D]. Chengdu: Chengdu University of Technology. He J X. 2016. Research on the seismic response characteristics of the Lengzhuguan rock slope[D]. Chengdu: Chengdu University of Technology. He J X, Wang Y S, Luo Y H, et al. 2015. Monitoring result analysis of slope seismic response during the Kangding MS 6.3 Earthquake[J]. Journal of Engineering Geology, 23 (3): 383-393. Huang R Q, Wang Y S, Pei X J, et al. 2013. Characteristics of Co-seismic landslides triggered by the Lushan MS7.0 earthquake on the 20th of April, Sichuan Province, China[J]. Journal of Southwest Jiaotong University, 48 (4): 581-589. Jin G, Wang Y S, Shi B X, et al. 2019. Characteristics of seismic response of the 6.0-Magnitude Earthquake, Changing county of Yibin in Southwest China's Sichuan province[J]. Mountain Research, 37 (6): 943-954. Liu H B, Zhu X. 1999. Advance on topographic amplification effects of seismic response[J]. World Information on Earthquake Engineerting, 15 (3): 20-25. Li J. 1993. Conceptual differences and significances of several types of response spectrum[J]. World Information on Earthquake Engineerting, 9 (4): 9-14. Li X Z, Kong J M, Cui Y, et al. 2010. Statistical relations between landslides induced by Wenchuan Earthquake and earthquake parameters geological as well as geomorphological factors[J]. Journal of Engineering Geology, 18 (1): 8-14. Liu Y. 2016. Seismic monitoring and simulation study of fragmentation slope in west side of Qingchuan Dongshan[D]. Chengdu: Chengdu University of Technology. Luo Y H. 2011. Study on complex slopes response law under earthquake action[D]. Chengdu: Chengdu University of Technology. Li Z C, Gao M T, Chen X L, et al. 2019. Simulation of ground motion by the 2017 Jiuzhaigou MS7.0 earthquake and estimation of ground motion intensity in the Zhangzha Town[J]. Chinese Journal of Geophysics, 62 (7): 2567-2581. Shen M, Wang W X, Liu H W. 2007. Stability mechanism and mechanical model of stratified slope[J]. Shanxi Architecture, 33 (28): 119-120. Shen T, Wang Y S, Luo Y H, et al. 2018. Monitoring result and analysis of slope seismic response during the Jiuzhaigou MS7.0 earthquake[J]. Journal of Engineering Geology, 26 (6): 1161-1621. Wang J L, Wang Y S, Xin C C. 2018. Analysis of slope and overburden seismic response during the Jiuzhaigou MS4.5 earthquake[J]. China Science Paper, 13 (21): 2401-2407. Wang Y S, Liu J W, Zhao B, et al. 2019. Response characteristics of slope seismic to gongxian MS5.4 earthquake in Sichuan, China[J]. Journal of Earth Sciences and Environment, 41 (5): 613-622. Wang Y S, Xu H B, Luo Y H, et al. 2009. Study of formation conditions and toss motion program of high landslides induced by earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (11): 2360-2368. Wang Y S, Zhang X, Zhang J D, et al. 2017. Seismic mountainous geo-hazard inverstigation of Dongchuan MS7.8 earthquake in 1733[J]. South-to-North Water Transfers and Water Science & Technology, 15 (1): 138-144. Wang Z X. 2020. Investigations of topographic effects on ground motion basedon the spectral element methods—A study case in slopes of Qingchuan County[J]. Earthquake Research of Sichuan, (1): 10-15. Xin C C, Wang Y S, Shen T, et al. 2018. Seismic response of Xuejiaba slope during the Jiuzhaigou MS3.2[J]. Journal of Engineering Geology, 26 (6): 1622-1630. Zheng G, Xu Q, Ju Y Z, et al. 2018. The Pusacun rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: characteristics and failure mechanism[J]. Journal of Engineering Geology, 26 (1): 223-240. 陈国平, 温留汉·黑沙, 王帅. 2011. 多种表征强震动记录特性的参数对比分析[J]. 华南地震, 31 (2): 45-53. doi: 10.3969/j.issn.1001-8662.2011.02.006 崔圣华, 裴向军, 黄润秋, 等. 2019. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 27 (2): 437-450. doi: 10.13544/j.cnki.jeg.2017-179 侯红娟. 2013. 水平层状斜坡地震动响应特性的振动台试验研究[D]. 成都: 成都理工大学. 贺建先. 2013. 冷竹关岩质斜坡地震动力响应特征研究[D]. 成都: 成都理工大学. 贺建先, 王运生, 罗永红, 等. 2015. 康定MS6.3级地震斜坡地震动响应监测分析[J]. 工程地质学报, 23 (3): 383-393. 康定MS6.3级地震斜坡地震动响应监测分析 黄润秋, 王运生, 裴向军, 等. 2013.4 ·20芦山MS7.0级地震地质灾害特征[J]. 西南交通大学学报, 48 (4): 581-589. doi: 10.3969/j.issn.0258-2724.2013.04.001 金刚, 王运生, 史丙新, 等. 2019. 宜宾长宁MS6.0级地震斜坡动力响应特征[J]. 山地学报, 37 (6): 943-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201906015.htm 刘洪兵, 朱晞. 1999. 地震中地形放大效应的观测和研究进展[J]. 世界地震工程, 15 (3): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm 李杰. 1993. 几类反应谱的概念差异及其意义[J]. 世界地震工程, 9 (4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199304002.htm 李秀珍, 孔纪名, 崔云, 等. 2010. 汶川地震滑坡与地震参数及地质地貌因素之间的相关关系[J]. 工程地质学报, 18 (1): 8-14. doi: 10.3969/j.issn.1004-9665.2010.01.002 刘勇. 2016. 青川东山西侧碎裂状斜坡地震动监测与模拟研究[D]. 成都: 成都理工大学. 罗永红. 2011. 地震作用下复杂斜坡响应规律研究[D]. 成都: 成都理工大学. 李宗超, 高孟潭, 陈学良, 等. 2019. 九寨沟MS7.0地震强地震动模拟及漳扎镇地震动强度预测[J]. 地球物理学报, 62 (7): 2567-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907016.htm 申敏, 王文星, 刘花维. 2007. 层状边坡失稳机制及其力学模型[J]. 山西建筑, 33 (28): 119-120. doi: 10.3969/j.issn.1009-6825.2007.28.073 申通, 王运生, 罗永红, 等. 2018. 九寨沟MS7.0级地震斜坡地震动响应监测研究[J]. 工程地质学报, 26 (6): 1161-1621. doi: 10.13544/j.cnki.jeg.2017-446 王荐霖, 王运生, 辛聪聪. 2018. 九寨沟MS4.5级地震斜坡体及覆盖层的动响应分析[J]. 中国科技论文, 13 (21): 2401-2407. doi: 10.3969/j.issn.2095-2783.2018.21.001 王运生, 刘江伟, 赵波, 等. 2019. 四川珙县MS 5.4级地震斜坡地震动响应特征[J]. 地球科学与环境学报, 41 (5): 613-622. doi: 10.3969/j.issn.1672-6561.2019.05.009 王运生, 徐鸿彪, 罗永红, 等. 2009. 地震高位滑坡形成条件及抛射运动程式研究[J]. 岩石力学与工程学报, 28 (11): 2360-2368. doi: 10.3321/j.issn:1000-6915.2009.11.027 王运生, 张欣, 张金达, 等. 2017.1733年东川MS7.8地震山地灾害研究[J]. 南水北调与水利科技, 15 (1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201701023.htm 万子轩. 2020. 基于谱元法的地震动放大效应研究——以青川县斜坡为例[J]. 四川地震, (1): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ202001003.htm 辛聪聪, 王运生, 申通, 等. 2018. 九寨沟MS3.2级余震薛家坝坡体地震动响应特征[J]. 工程地质学报, 26 (6): 1622-1630. doi: 10.13544/j.cnki.jeg.2017-475 郑光, 许强, 巨袁臻, 等. 2018.2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 26 (1): 223-240. doi: 10.13544/j.cnki.jeg.2018.01.023 -