白色硅藻土微观结构特征定量研究

罗易 高磊 高明军 康银庚

罗易, 高磊, 高明军, 等. 2022. 白色硅藻土微观结构特征定量研究[J]. 工程地质学报, 30(2): 317-326.doi: 10.13544/j.cnki.jeg.2020-551
引用本文: 罗易, 高磊, 高明军, 等. 2022. 白色硅藻土微观结构特征定量研究[J]. 工程地质学报, 30(2): 317-326.doi: 10.13544/j.cnki.jeg.2020-551
Luo Yi, Gao Lei, Gao Mingjun, et al. 2022. Quantitative study on microstructure characteristics of white diatomite[J]. Journal of Engineering Geology, 30(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-551
Citation: Luo Yi, Gao Lei, Gao Mingjun, et al. 2022. Quantitative study on microstructure characteristics of white diatomite[J]. Journal of Engineering Geology, 30(2): 317-326. doi: 10.13544/j.cnki.jeg.2020-551

白色硅藻土微观结构特征定量研究

doi: 10.13544/j.cnki.jeg.2020-551
基金项目: 

国家自然科学基金 52027812

中央高校基本科研业务费 B210202047

中央高校基本科研业务费 B210204020

详细信息
    作者简介:

    罗易(1997-),男,硕士生,主要从事特殊土的工程特性研究. E-mail: loy@hhu.edu.cn

    通讯作者:

    高磊(1984-),男,博士,副教授,硕士生导师,主要从事工程地质和环境岩土方面的研究. E-mail: gaoleihhu@hhu.edu.cn

  • 中图分类号: TU44

QUANTITATIVE STUDY ON MICROSTRUCTURE CHARACTERISTICS OF WHITE DIATOMITE

Funds: 

the National Natural Science Foundation of China 52027812

the Fundamental Research Funds for the Central Universities B210202047

the Fundamental Research Funds for the Central Universities B210204020

  • 摘要: 硅藻土常常呈现白色、黄色、黑色等颜色,其中以白色硅藻土较为特殊,遇水后其强度明显降低。为了掌握白色硅藻土的工程特性,必须研究白色硅藻土的微观结构特征。本文以白色硅藻土为研究对象,通过扫描电镜试验,以数值化的形式展现其孔隙特征,从微观角度分析白色硅藻土的整体形貌,同时对白色硅藻土的微观结构进行量化分析,通过二值化处理以及分形维数分析,对白色硅藻土土体孔隙的微观特征进行研究,结果表明:(1)白色硅藻土具有独特的无序排列的多孔结构,颗粒群间的聚集主要以堆积聚合排列的形式存在,其整体结构主要表现为分散结构,接触形式以面对面为主。(2)白色硅藻土微观费雷特直径分布结果表明其微观孔隙普遍较小,且孔径值大小呈现出无规律分布情况,随机性较强;孔隙结构处于不规则形状,呈现出细小孔隙形态。(3)白色硅藻土拥有较高的面孔隙度,在微观上表现为孔隙小、数量繁多以及结构复杂。(4)白色硅藻土具有较好的分形特性,在不同阈值下硅藻土的分形维数呈现出非线性减小的趋势,且阈值越大,分形维数降低的幅度越大;同时白色硅藻土的分形维数值较大,表明白色硅藻土微观表面孔隙结构单元数量较多,在宏观上表现出孔隙小,孔隙数量较多的特征。
  • 图  1  白色硅藻土现场照片

    Figure  1.  Site photo of white diatomite

    图  2  白色硅藻土扫描电镜结果

    a. 5000倍;b. 10 000倍

    Figure  2.  SEM results of white diatomite

    图  3  白色硅藻土微观孔隙费雷特直径分布

    a. 试样1;b. 试样2;c. 试样3

    Figure  3.  Distribution of FERET diameter in micro pores of white diatomite

    图  4  试样1二值化结果

    a. SEM图形(5000倍);b. 二值化图形

    Figure  4.  Binarization results of sample 1

    图  5  试样2二值化结果

    a. SEM图形(5000倍);b. 二值化图形

    Figure  5.  Binarization results of sample 2

    图  6  试样3二值化结果

    a. SEM图形(5000倍);b. 二值化图形

    Figure  6.  Binarization results of sample 3

    图  7  不同阈值下分形维数变化曲线

    Figure  7.  Fractal dimension curve under different thresholds

    图  8  试样3在不同阈值下二值化图形

    a. 阈值110;b. 阈值140;c. 阈值170;d. 阈值200

    Figure  8.  Binarization pattern of sample 3 under different thresholds

    图  9  白色硅藻土分形维数结果曲线

    a. 试样1;b. 试样2;c. 试样3

    Figure  9.  Fractal dimension curve of white diatomite

    图  10  最佳阈值下白色硅藻土二值化图形

    a. 试样1(阈值98);b. 试样2(阈值101);c. 试样3(阈值100)

    Figure  10.  Binarization pattern of white diatomite under optimum threshold

    表  1  白色硅藻土基本物理特性

    Table  1.   Basic physical properties of white diatomite

    含水率ω/% 密度ρ/g·cm-3 比重Gs 液限ωL/% 塑限ωP/% 液性指数IL 塑性指数IP
    40.7 1.82 2.47 94.91 36.69 0.07 59
    下载: 导出CSV

    表  2  白色硅藻土面孔隙度计算结果

    Table  2.   Calculation results of surface porosity of white diatomite

    计算内容 试样1 试样2 试样3
    孔隙部分/像素点 6589 9195 10 313
    土骨架部分/像素点 5798 8452 9493
    面孔隙度/% 53.19 52.11 52.07
    下载: 导出CSV

    表  3  白色硅藻土试样的分形维数

    Table  3.   Fractal dimension of white diatomite samples

    名称 分形维数
    试样1 1.92
    试样2 1.91
    试样3 1.90
    下载: 导出CSV
  • Al-Degs Y, Khraisheh M A M, Tutunji M F. 2001. Sorption of lead ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 35 (15): 3724-3728. doi: 10.1016/S0043-1354(01)00071-9
    Bao Y N. 2005. Study on diatomite modified asphalt[D]. Xi'an: Chang'an University.
    Diaz-Rodriguez J A. 2011. Diatomaceous soils: monotonic behavior[C]//International Symposium on Deformation Characteristics of Geomaterials, 10.1314012.1.3322.5606.
    Diaz-Rodriguez J A, Gonzalez-Rodriguez R. 2013. Influence of diatom microfossils on soil compressibility[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: 325-328.
    Fang Y Y, Jiang J, Jiang H H. 2019. Research on the microstructure and the mechanical properties of Shengzhou diatomite[J]. Low Temperature Architecture Technology, 41 (2): 75-77, 81.
    Gao H X, Yin K L, Zhou C M. 2007. Diatomite landslides stability analysis and time forecast[J]. Journal of Northwest University(Natural Science Edition), 37 (1): 127-130.
    Han X Q. 2001. Research on the current situation and countermeasures of diatomite resources development at home and abroad[J]. China Non-metallic Mining Industry Herald, (2): 3-5.
    Hong Z S. 2003. Study on the microstructure of strong structural diatomite under different stress levels[C]//China Society of Civil Engineering. Proceedings of the 9th Soil Mechanics and Geotechnical Engineering Academic Conference of China Civil Engineering Society(Volume I). Beijing: . Tsinghua University Press.
    Karaman S, Karaipekli A, Sar A, et al. 2011. Polyethylene glycol(PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 95 (7): 1647-1653.
    Kuang Z H, Zhou X M. 2018. Research and analysis of hole forming technology of cast-in-place pile in diatomite geology[J]. Pearl River Water Transport, (9): 19-21.
    Kang Y G, Gao L, Luo Y, et al. 2020. Study on boring test of bridge cast-in-place piles in diatomite area[J/OL]. Journal of Disaster Prevention and Mitigation Engineering, 2020-04-13, http://kns.cnki.netkcmsdetail/32.1695.P.20200413.1101.002.html.
    Kang Y G, Gao L, Luo Y, et al. 2020. Field test of the proportional coefficient m of horizontal resistance coefficient of diatomaite layer[J]. Science Technology and Engineering, 20 (2): 694-700.
    Liu J, Zhao D F. 2009. The present situation and development of diatomite[J]. Environmental Science and Management, 34 (5): 104-106, 161.
    Li Y, Ma Q Z, Wu Q. 2018. Determination of side friction of cast-in-place pile in diatom[J]. China Harbor Engineering, 38 (6): 26-29.
    Lin H, Zhou C G, Chen F, et al. 2019. Shear strength and macro-micro analysis of copper tailings and tungsten tailings[J]. Journal of Engineering Geology, 27 (2): 317-324.
    Ma Q Z, He Z M, Cai Z M. 2017. Engineering properties of diatomite in Namibia[J]. Port & Waterway Engineering, (12): 80-84.
    Mark L H, Neil W P. 2003. Selection of descriptors for particle shape characterization[J]. Particle and Particle Systems Characterization, 20(1): 25-38. doi: 10.1002/ppsc.200390002
    Noémie V G, Frank J C, Matheus M, et al. 2011. Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material[J]. Applied Clay Science, 52 (1): 115-121.
    Shang Y L. 2003. Tengchong diatomite deposit and its genesis[J]. Yunnan Geology, 22 (4): 418-425.
    Shen K, Fu H L, Qin Z, et al. 2019. The influence of the binaryzation threshold on fractal dimension of SEM images for granite[J]. Geology and Exploration, 55 (1): 87-94.
    Tang C S, Shi B, Cui Y J. 2018. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 40 (8): 1415-1423.
    Wang Y, Tang Y, Dong A, et al. 2002. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process[J]. Journal of Materials Chemistry, 12 (6): 1812-1818. doi: 10.1039/b201113a
    Wang S F, Yang P, Liu G R, et al. 2016. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 38 (7): 1254-1261.
    Xu S Z, Pei C D, Hu H F. 2014. Endocardium and epicardium segmentation in MR images based on developed Otsu and dynamic programming[J]. Sensors and Transducers, 167(3): 117-122.
    Xie X S, Chen H S, Xiao X H, et al. 2019. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 27 (5): 966-972.
    Yang S S, Shao L Y. 2006. Estimation of fractal dimensions of images based on MATLAB[J]. Journal of China University of Mining and Technology, 35 (4): 478-482.
    Zhang Q, Zhuo X D. 2005. Microstructure and application of diatomite[J]. China Building Sanitary Ceramics, 12 (12): 116-117.
    Zhang X K. 2008. Effect of diatomiteto on performance of asphalt mixtures[D]. Chongqing: Chongqing Jiaotong University.
    Zhang Y S, Guo C B, Qu Y X, et al. 2012. Discovery of swelling diatomite at tengchong, Yunnan province and its implication in engineering geology[J]. Journal of Engineering Geology, 20 (2): 266-275.
    Zhang Y S, Guo C B, Qu Y X, et al. 2013. Research on mechanical properties of swelling diatomite and their geohazard effects[J]. Rock and Soil Mechanics, 34 (1): 23-30, 39.
    Zhang X W, Kong L W, Li H C, et al. 2018. Engineering geological properties and micro-mechanism of residual soils derived from mudstone in Harare, Zimbabwe[J]. Journal of Engineering Geology, 26 (6): 1424-1432.
    Zhu H H, Wang D Y, Wang B J, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28 (2): 317-326.
    鲍燕妮. 2005. 硅藻土改性沥青研究[D]. 西安: 长安大学.
    方遥越, 蒋军, 姜煌辉. 2019. 嵊州硅藻土的微观结构特征及其力学性质研究[J]. 低温建筑技术, 41 (2): 75-77, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201902024.htm
    高华喜, 殷坤龙, 周春梅. 2007. 硅藻土滑坡稳定性分析及其时间预报[J]. 西北大学学报(自然科学版), 37 (1): 127-130. doi: 10.3321/j.issn:1000-274X.2007.01.032
    韩秀卿. 2001. 国内外硅藻土资源开发现状及对策研究[J]. 中国非金属矿工业导刊, (2): 3-5. doi: 10.3969/j.issn.1007-9386.2001.02.001
    洪振舜. 2003. 不同应力水平下强结构性硅藻土的微观结构特性研究[C]//中国土木工程学会. 中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册). 北京: 清华大学出版社.
    匡朝晖, 周希泯. 2018. 硅藻土地质的灌注桩成孔技术研究与分析[J]. 珠江水运, (9): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSI201809008.htm
    康银庚, 高磊, 罗易, 等. 2020. 硅藻土地区桥梁灌注桩成孔测试研究[J/OL]. 防灾减灾工程学报, 2020-04-13, http://kns.cnki.netkcmsdetail/32.1695.P.20200413.1101.002.html.
    康银庚, 高磊, 罗易, 等. 2020. 硅藻土层水平抗力系数的比例系数m试验研究[J]. 科学技术与工程, 20 (2): 694-700. doi: 10.3969/j.issn.1671-1815.2020.02.039
    刘洁, 赵东风. 2009. 硅藻土的研究现状及进展[J]. 环境科学与管理, 34 (5): 104-106, 161. doi: 10.3969/j.issn.1673-1212.2009.05.028
    李懿, 马秋柱, 吴乔. 2018. 硅藻土地层中灌注桩侧摩阻力的确定[J]. 中国港湾建设, 38 (6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC201806006.htm
    林海, 周创兵, 陈菲, 等. 2019. 铜尾砂和钨尾砂的抗剪强度及宏细观分析[J]. 工程地质学报, 27 (2): 317-324. doi: 10.13544/j.cnki.jeg.2017-576
    马秋柱, 何智敏, 蔡泽明. 2017. 纳米比亚硅藻土的工程特性[J]. 水运工程, (12): 80-84. doi: 10.3969/j.issn.1002-4972.2017.12.014
    尚映莲. 2003. 腾冲硅藻土矿床及其成因[J]. 云南地质, 22 (4): 418-425. doi: 10.3969/j.issn.1004-1885.2003.04.008
    申科, 付厚利, 秦哲, 等. 2019. 花岗岩电镜扫描图像二值化阈值对分形维数影响的研究[J]. 地质与勘探, 55 (1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201901009.htm
    唐朝生, 施斌, 崔玉军. 2018. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 40 (8): 1415-1423.
    王升福, 杨平, 刘贯荣, 等. 2016. 人工冻融软黏土微观孔隙变化及分形特性分析[J]. 岩土工程学报, 38 (7): 1254-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607012.htm
    谢小帅, 陈华松, 肖欣宏, 等. 2019. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报, 27 (5): 966-972. doi: 10.13544/j.cnki.jeg.2019028
    杨书申, 邵龙义. 2006. MATLAB环境下图像分形维数的计算[J]. 中国矿业大学学报, 35 (4): 478-482. doi: 10.3321/j.issn:1000-1964.2006.04.011
    张强, 周学东. 2005. 硅藻土的微观结构特点及其应用[J]. 中国建筑卫生陶瓷, 12 (12): 116-117.
    张贤康. 2008. 硅藻土材料对沥青混合料性能的影响[D]. 重庆: 重庆交通大学.
    张永双, 郭长宝, 曲永新, 等. 2012. 云南腾冲膨胀性硅藻土的发现及其工程地质意义[J]. 工程地质学报, 20 (2): 266-275. doi: 10.3969/j.issn.1004-9665.2012.02.016
    张永双, 郭长宝, 曲永新, 等. 2013. 膨胀性硅藻土的力学性质及其灾害效应研究[J]. 岩土力学, 34 (1): 23-30, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301003.htm
    张先伟, 孔令伟, 李宏程, 等. 2018. 津巴布韦泥岩残积土的工程地质特性及其微观机制[J]. 工程地质学报, 26 (6): 1424-1432. doi: 10.13544/j.cnki.jeg.2017-429
    朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28 (2): 317-326 doi: 10.13544/j.cnki.jeg.2020-081
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  19
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-02
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回