钢板桩施工振动现场监测分析

陈建峰 姚宇昂 张菊连 姚鸿梁

陈建峰,姚宇昂,张菊连,等. 2021. 钢板桩施工振动现场监测分析[J]. 工程地质学报,29(1):222-228. doi:10.13544/j.cnki.jeg.2020-552 doi: 10.13544/j.cnki.jeg.2020-552
引用本文: 陈建峰,姚宇昂,张菊连,等. 2021. 钢板桩施工振动现场监测分析[J]. 工程地质学报,29(1):222-228. doi:10.13544/j.cnki.jeg.2020-552 doi: 10.13544/j.cnki.jeg.2020-552
Chen Jianfeng, Yao Yu'ang, Zhang Julian, et al. 2021. Analysis of on-site vibration monitoring of steel sheet pile driving construction[J]. Journal of Engineering Geology, 29(1): 222-228. doi: 10.13544/j.cnki.jeg.2020-552
Citation: Chen Jianfeng, Yao Yu'ang, Zhang Julian, et al. 2021. Analysis of on-site vibration monitoring of steel sheet pile driving construction[J]. Journal of Engineering Geology, 29(1): 222-228. doi: 10.13544/j.cnki.jeg.2020-552

钢板桩施工振动现场监测分析

doi: 10.13544/j.cnki.jeg.2020-552
详细信息
    作者简介:

    陈建峰(1972-),男,博士,教授,博士生导师,主要从事地质工程方面的教学和科研工作. E-mail: jf_chen@tongji.edu.cn

    通讯作者:

    姚宇昂(1996-),男,硕士生,主要从事地质工程方面的科研工作. E-mail: matrixyao@tongji.edu.cn

  • 中图分类号: U445.55+1

ANALYSIS OF ON-SITE VIBRATION MONITORING OF STEEL SHEET PILE DRIVING CONSTRUCTION

  • 摘要: 本文采用自主设计的地面振动加速度监测系统对3个不同土性场地的钢板桩施工进行了现场监测,分析了钢板桩施工过程中的地面振动峰值加速度和振动频率特性,并探讨了振动衰减规律及对周边建筑物的影响。研究结果表明:土的强度对钢板桩施工振动的影响显著,钢板桩在低阻力土体中的贯入速率快,地面振动响应弱,而在高阻力的土体中贯入速率慢,地面振动相对大很多;钢板桩施工引起的地面径向和切向加速度在同一深度比较接近,且随着深度的增加有增大的趋势;振源距离和土性对钢板桩施工引起的地面振动主频率影响不大,地面振动主频率与桩锤施工频率之间呈较好的线性正相关关系;钢板桩施工振动在距振源4 m范围内衰减迅速,其施工对周围建筑物的最小安全距离要远小于挤土型桩基的施工。
  • 图  1  地面振动加速度监测系统

    a.监测系统排布图; b.信号处理单元; c.三轴测振仪

    Figure  1.  Ground vibration acceleration monitoring system

    图  2  测试方案示意图

    Figure  2.  Schematic chart of the monitoring program

    图  3  场地二的现场监测情况

    Figure  3.  Steel sheet pile monitoring scene

    图  4  不同方向加速度随深度的变化

    a.场地一; b.场地二; c.场地三

    Figure  4.  Changes of acceleration in different directions with depth

    图  5  场地二不同振源距离下的频域曲线

    Figure  5.  Spectrum curves vary with source distance at Site 2

    图  6  桩锤振动频率对场地的影响

    Figure  6.  Influence of vibration frequency of driver instrumentation on site

    图  7  地面振动主频率与桩锤施工频率之间的关系

    Figure  7.  Relationship between dominant frequency of site vibration and the frequency of pile hammer

    图  8  峰值速度衰减曲线

    a.场地一; b.场地二; c.场地三

    Figure  8.  Peak velocity attenuation curve

    表  1  3个场地钢板桩入土土层物理力学参数

    Table  1.   Physical and mechanical parameters of the penetrated soil layers in three sites

    场地 工程 土层 桩入土土层厚度h
    /m
    黏聚力c
    /kPa
    内摩擦角φ
    /(°)
    承载力特征值fak
    /kPa
    场地一 福建省宁德市某快堆厂地下室基坑支护工程 素填土 2.5 5.0 13.0
    淤泥质土 32.5 9.7 7.3 60
    场地二 北京市某高铁桥梁承台施工临时支护工程 粉质黏土夹黏土 15.4 25.0 18.0 140
    场地三 江西省九江市某污水处理厂基坑支护工程 粉质黏土 7.3 22.2 11.9 110
    粉细砂 24.1 0 10.8 140
    下载: 导出CSV

    表  2  不同建筑物条件下场地最小安全距离

    Table  2.   Safety distance of sites under different building conditions

    建筑物类型 基础处容许振动速度峰值/mm·s-1 场地一最小安全距离/m 场地二最小安全距离/m 场地三最小安全距离/m
    工业和公共建筑 8.25 0.3 3.0 3.1
    居住建筑 4.13 0.9 6.0 6.0
    对振动敏感且具有保护价值建筑 2.06 3.6 12.8 11.7
    下载: 导出CSV
  • Athanasopoulos G A, Pelekis P C. 2000. Ground vibrations from sheet-pile driving in urban environment: measurements, analysis and effects on buildings and occupants[J]. Soil Dynamics and Earthquake Engineering, 19(5): 371-387. doi: 10.1016/S0267-7261(00)00008-7
    Attewell P B, Selby A R, O'Donnell L. 1992. Estimation of ground vibration from driven piling based on statistical analyses of recorded data[J]. Geotechnical & Geological Engineering, 10(1): 41-59.
    Deckner F, Viking K, Guillemet C, et al. 2015a. Instrumentation system for ground vibration analysis during sheet pile driving[J]. Geotechnical Testing Journal, 38(6): 893-905.
    Deckner F, Viking K, Hintze S. 2015b. Aspects of ground vibrations due to pile and sheet pile driving[J]. Electronic Journal of Geotechnical Engineering, 20(19): 11161-11176.
    Dou H Q, Wang H, Wu F B, et al. 2018. Corner effects of deep excavations with multi exposed corners in square crossing of utility tunnel[J]. Journal of Engineering Geology, 26(6): 1657-1665.
    Gao G Y, Geng J H, Bi J W, et al. 2019. Effect of subway induced environmental vibration on building site through in-situ measurement[J]. Journal of Engineering Geology, 27(5): 1116-1121.
    Gao G Y, Meng Y, Chen J. 2018. Micro-viberation test and analysis for high-tech workshop[J]. Journal of Engineering Geology, 26(S1): 295-300.
    Head J M, Jardine F M. 1992. Ground-borne vibrations arising from piling[R]. CIRIA, London, UK, CIRIA Technical Note 142.
    Hou J. 2011. The design and numerical simulation of steel sheet pile supporting structure for foundation pit[D]. Nanjing: Nanjing University.
    Hu J M, Qian X P, Zhao G. 2001. Construction vibration study of seepage-proof wall with armor-plate pilf for the Yangtze river embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 20(S1): 1878-1881.
    Li R M, Yang W J. 2010. Design and application of lightly mounted steel sheet piles for deep piles for deep foundation pits in red sandstone[J]. Chinese Journal of Geotechnical Enginnering, 32(S1): 493-498.
    Lidén M. 2012. Ground vibrations due to vibratory sheet pile driving[D]. Stockholm, Sweden: Royal Institute of Technology.
    Martin D J. 1980. Ground vibrations from impact pile driving during road construction[R]. Transport and Road Research Laboratory, United Kingdom Department of the Environment, UK, TRRL Supplementary Report 544.
    The Professional Standards Compilation Gropilation Group of People's Republic of China. 2013. Standard for allowable vibration of building engineering(GB 50868-2013)[S]. Beijing: China Planning Press.
    Viking K. 2002a. Vibro drivability and induced ground vibrations of vibratory installed sheet piles[C]//Proceedings of the International Conference on vibratory pile driving and deep soil compaction: 99-112.
    Viking K. 2002b. Vibro-driveability-a field study of vibratory driven sheet piles in non-cohesive soils[D]. Stockholm, Sweden: Royal Institute of Technology.
    Whenham V. 2011. Power transfer and vibrator-pile-soil interactions within the framework of vibratory pile driving[D]. Belgium: University of Louvain.
    Xu X C, Xu H B, Chen S X. 2003. Research on influence of vibration caused by pile construction on environment and counter measures[J]. Rock and Soil Mechanics, 24(6): 957-960.
    Zhang J. 2012. Force condition analysis and application of steel sheet pile cofferdam for bridge deepwater foundation[J]. Bridge Construction, 42(5): 74-81.
    Zhang Y C, Yang G H, Jiang Y, et al. 2012. Application of retaining structure of steel sheet pile cofferdam in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 34(S1): 659-665.
    Zheng H Z, Yan W J, Shi Y C, et al. 2020. Vibration characteristics and long-term deformation analysis of bridge piers-foundation sites in seasonal frozen soil region under repeated train load[J]. Journal of Engineering Geology, 28(4): 907-915.
    豆红强, 王浩, 吴福宝, 等. 2018. 带多阳角的综合管廊垂直交叉节点深基坑的坑角效应分析[J]. 工程地质学报, 26(6): 1657-1665. doi: 10.13544/j.cnki.jeg.2017-473
    高广运, 耿建龙, 毕俊伟, 等. 2019. 地铁环境振动对建筑场地影响实测分析[J]. 工程地质学报, 27(5): 1116-1121. doi: 10.13544/j.cnki.jeg.2019050
    高广运, 孟园, 陈娟. 2018. 高科技电子工业厂房微振动实测分析[J]. 工程地质学报, 26(S1): 295-300. doi: 10.13544/j.cnki.jeg.2018102
    侯军. 2011. 基坑钢板桩支护结构设计与数值模拟[D]. 南京: 南京大学.
    胡建敏, 钱喜萍, 赵根. 2001. 长江堤防钢板桩防渗墙施工振动研究[J]. 岩石力学与工程学报, 20(S1): 1878-1881. https: //www.cnki.com.cn/Article/CJFDTOTAL-YSLX2001S1063.htm
    李仁民, 杨文俊. 2010. 深基坑浅嵌固钢板桩在红砂岩地质中的设计与应用[J]. 岩土工程学报, 32(S1): 493-498. https: //www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1097.htm
    许锡昌, 徐海滨, 陈善雄. 2003. 桩基施工振动对环境影响的研究与对策[J]. 岩土力学, 24(6): 957-960. doi: 10.3969/j.issn.1000-7598.2003.06.018
    张骏. 2012. 桥梁深水基础钢板桩围堰受力分析与应用[J]. 桥梁建设, 42(5): 74-81. https: //www.cnki.com.cn/Article/CJFDTOTAL-QLJS201205014.htm
    张玉成, 杨光华, 姜燕, 等. 2012. 软土地区双排钢板桩围堰支护结构的应用及探讨[J]. 岩土工程学报, 34(S1): 659-665. https: //www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1130.htm
    郑海忠, 严武建, 石玉成, 等 2020. 重复列车荷载作用下季节性冻土区桥墩-基础场地振动特性及长期变形分析[J]. 工程地质学报, 28(4): 907-915. doi: 10.13544/j.cnki.jeg.2019-219
    中华人民共和国行业标准编写组. 2013. 建筑工程容许振动标准(GB 50868-2013)[S]. 北京: 中国计划出版社.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  100
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-12-27
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回