川南地区龙马溪组页岩储层裂缝特征

霍健 王星皓 罗超 黄浩勇 陈娟 尹超 赫建明

霍健,王星皓,罗超,等. 2021.川南地区龙马溪组页岩储层裂缝特征[J].工程地质学报,29(1):171-182. doi:10.13544/j.cnki.jeg.2020-561 doi: 10.13544/j.cnki.jeg.2020-561
引用本文: 霍健,王星皓,罗超,等. 2021.川南地区龙马溪组页岩储层裂缝特征[J].工程地质学报,29(1):171-182. doi:10.13544/j.cnki.jeg.2020-561 doi: 10.13544/j.cnki.jeg.2020-561
Huo Jian, Wang Xinghao, Luo Chao, et al. 2021. Fracture characteristics of Longmaxi shale in southern Sichuan[J]. Journal of Engineering Geology, 29(1): 171-182. doi: 10.13544/j.cnki.jeg.2020-561
Citation: Huo Jian, Wang Xinghao, Luo Chao, et al. 2021. Fracture characteristics of Longmaxi shale in southern Sichuan[J]. Journal of Engineering Geology, 29(1): 171-182. doi: 10.13544/j.cnki.jeg.2020-561

川南地区龙马溪组页岩储层裂缝特征

doi: 10.13544/j.cnki.jeg.2020-561
基金项目: 

国家自然科学基金 41877270

深层页岩气复杂缝网形成机制研究 XNS页研院JS2020-18

详细信息
    作者简介:

    霍健(1996-),男,硕士生,主要从事非常规能源开发方面的研究. E-mail: huojian18@mails.ucas.ac.cn

  • 中图分类号: P583

FRACTURE CHARACTERISTICS OF LONGMAXI SHALE IN SOUTHERN SICHUAN

Funds: 

the National Natural Science Foundation of China 41877270

Petro China Southwest Oil & Gasfield Company XNS页研院JS2020-18

  • 摘要: 我国页岩气资源储量巨大,四川盆地更是我国主要的页岩气产区。在页岩气勘探开发中一个重要指标便是裂缝,它承载着气体储存和运输通道两大功能。因此了解储层裂缝的微观性质对于判断储层含气量以及开采远景具有重要意义。本文以页岩气主要产区——川南地区页岩气气田泸201井的岩芯为主要研究对象,以手持显微镜、体式显微镜为主要观察工具,对岩芯进行了细观尺度下的观察,借助于图像软件对岩芯表面进行了图像重构,对储层裂缝的类别及特征、发育特征及矿物特征等进行了统计分析,并成功构建出研究区页岩岩芯二维裂缝模型。通过宏观到微观角度观察研究发现:(1)龙马溪组龙一1亚段1、2小层与五峰组页岩储层裂缝多为裂缝长度/岩芯周长小于25%的短裂缝,平均占比79.8%。(2)龙一1亚段1小层岩芯裂缝发育,其中以平行于层理的裂缝为主,龙一1亚段2小层天然微裂缝数量略低于1小层,而五峰组岩芯仅发现极少量微观可见的天然微裂缝。(3)岩芯表面观测到的主要矿物为黄铁矿、方解石。本文的主要创新点在于通过直观的方法对川南龙马溪组储层页岩的裂缝特征进行了统计分析,对于后续页岩气开采以及储层气体流动分析具有十分重要的意义。
  • 图  1  泸201井井位示意图

    Figure  1.  Schematic diagram of well location of Well Lu 201

    图  2  四川盆地南部含气构造分布图

    (马力等,2004; 张水昌等,2006; 李德生,2007; 有修改)

    Figure  2.  Distribution map of gas-bearing structures in the Southern Sichuan Basin

    (Ma et al., 2004; Zhang et al., 2006; Li, 2007; modified)

    图  3  川南低陡褶皱带构造行迹图(汪泽成等, 2002a, 2002b;有修改)

    Figure  3.  Structural track map of low-steep fold belt in southern Sichuan (Wang et al., 2002a, 2002b; modified)

    图  4  泸201井五峰组—龙马溪组综合测井曲线

    Figure  4.  Comprehensive logging curve from Wufeng Formation to Longmaxi Formation in Well Lu 201

    图  5  观测设备

    a.手持显微镜; b.体式显微镜

    Figure  5.  Observation equipment

    图  6  龙马溪组龙一1亚段1小层局部岩芯照片

    Figure  6.  Local core photos of 1st small layer in the Long-1 sub-member of Longmaxi Formation

    图  7  龙马溪组龙一1亚段2小层局部岩芯照片

    Figure  7.  Photographs of local cores of 2nd small layers in Long-1 sub-member of Longmaxi Formation

    图  8  五峰组局部岩芯照片

    Figure  8.  Local core photos of Wufeng Formation

    图  9  龙马溪组龙一1亚段1小层局部岩芯重构图像

    Figure  9.  Reconstruction image of local cores of 1st small layer in the Long-1 submember of Longmaxi Formation

    图  10  龙马溪组龙一1亚段2小层局部岩芯重构图像

    Figure  10.  Local core reconstruction images of 2nd small layers in the Long-1 sub-member of Longmaxi Formation

    图  11  五峰组局部岩芯重构图像

    Figure  11.  Local core reconstruction image of Wufeng Formation

    图  12  不同类型裂缝示意图

    a.水平裂缝;b.低角度裂缝;c.高角度裂缝

    Figure  12.  Diagram of different types of cracks

    图  13  龙马溪组龙一1亚段1小层高角度裂缝示意图

    Figure  13.  Schematic diagram of high-angle fractures in a small layer of Long-1 sub-member of Longmaxi Formation

    图  14  页岩储层黄铁矿块体特征

    a.条状黄铁矿;b.带状黄铁矿;c.结晶状黄铁矿

    Figure  14.  Characteristics of pyrite blocks in shale reservoirs

    图  15  方解石脉

    Figure  15.  Calcite veins

    图  16  龙一1亚段1、2小层页岩岩芯裂缝长度分布

    Figure  16.  Fracture length distribution of shale cores in the 1st and 2nd sub-member of Long-1

    图  17  二维裂缝网络模型生成流程图

    Figure  17.  Flow chart of generating two-dimensional fracture network model

    图  18  不同尺度二维页岩裂缝模型示意图

    a. 1 m×1 m;b. 50 m×50 m;c. 100 m×100 m

    Figure  18.  Schematic diagram of two-dimensional shale fracture models at different scales

    表  1  五峰组—龙马溪组页岩裂缝长度划分标准

    Table  1.   Standards for dividing the fracture length of Wufeng Formation-Longmaxi Formation shale

    裂缝类型 裂缝长度/岩芯周长
    短裂缝 ≤25%
    中裂缝 25%~50%
    较长裂缝 50%~75%
    长裂缝 ≥75%
    下载: 导出CSV

    表  2  五峰组—龙马溪组页岩裂缝类型与密度统计

    Table  2.   Fracture types and density statistics of Wufeng Formation-Longmaxi Formation shale

    龙-1亚段地层 裂缝类型 平均密度/m-1 总裂缝平均密度/m-1
    龙马溪组1小层 水平缝 8.89 4.46
    低角度裂缝 0.71
    高角度裂缝 3.79
    龙马溪组2小层 水平缝 8.46 3.65
    低角度裂缝 0
    高角度裂缝 2.49
    五峰组 水平缝 2.45 0.82
    低角度裂缝 0
    高角度裂缝 0
    下载: 导出CSV

    表  3  裂缝长度分布情况统计表

    Table  3.   Statistical table of crack length distribution

    裂缝长度/岩芯周长 裂缝占比 裂缝长度/岩芯周长 裂缝占比 裂缝长度/岩芯周长 裂缝占比 裂缝长度/岩芯周长 裂缝占比
    < 5% 0.205 25%~30% 0.027 50%~55% 0.004 80%~85% 0
    5%~10% 0.274 30%~35% 0.015 55%~60% 0.004 85%~90% 0
    10%~15% 0.263 35%~40% 0.011 60%~65% 0.004 90%~95% 0
    15%~20% 0.116 40%~45% 0.011 65%~70% 0 >95% 0
    20%~25% 0.058 45%~50% 0.008 75%~80% 0
    下载: 导出CSV
  • Bowker K A. 2007. Barnett shale gas production, fort worth basin: issues and discussion[J]. AAPG Bulletin, 91(4): 523-533. doi: 10.1306/06190606018
    Cheng K M, Wang S Q, Dong D Z, et al. 2009. Accumulation conditions of shale gas reservoirs in the Lower Cambrian Qiongzhusi formation, the Upper Yangtze region[J]. Natural Gas Industry, 29(5): 40-44.
    Curtis J B. 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86(11): 1921-1938.
    Di Q Y, Tian F, Suo Y H, et al. 2021. Linkage of deep lithospheric structures to intraplate earthquakes: A perspective from multi-source and multi-scale geophysical data in the South China Block[J]. Earth-Science Reivews, 214(103504): 1-23.
    Dong D Z, Wang Y M, Huang X N, et al. 2016. Discussion about geological characteristics, resource evaluation methods and its key parameters of shale gas in China[J]. Natural Gas Geoscience, 27(9): 1583-1601.
    Fu C Q. 2017. Study on reservoir characteristics and shale gas enrichment of Wufeng-Longmaxi formation shale in Southeast Chongqing[D]. Xuzhou: China University of Mining.
    Gala D P, Manchanda R, Sharma M M. 2018. Modeling of fluid injection in depleted parent wells to minimize damage due to frac-hits[C]//Unconventional Resources Technology Conference. Houston, Texas: 4118-4131.
    Gao L. 2019. Physical properties of Wufeng-Longmaxi shale reservoir in North Guizhou-South Chongqing area[D]. Beijing: Chinese Academy of Geological Sciences.
    Huang J Z. 2009. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J]. Lithologic Reservoirs, 21(2): 116-120.
    Ibrahim M I, Hariri M M, Makkawi M H, et al. 2019. Geological and geostatistical models of qusaiba shale: High resolution outcrop analog from Central Saudi Arabia[C]//SPE Middle East Oil and Gas Show and Conference. [S.L.]: Society of Petroleum Engineers.
    Li D S. 2007. Innovation of petroleum geology in China[J]. Oil & Gas Geology, 28(1): 1-11.
    Li X J, Hu S Y, Cheng K M. 2007. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 34(4): 392-400.
    Li X J, Lü Z G, Dong D Z, et al. 2009. Geologic controls on accumulation of shale gas in North America[J]. Natural Gas Industry, 29(5): 27-32.
    Liu S G, Xu G S, Xu G Q, et al. 2004. Primary study on the dynamics of natural GAS pools in Sichuan Basin, China[J]. Natural Gas Geoscience, 15(4): 323-330.
    Liu Y. 2016. Development environment and shale gas resources assessment of the Wufeng-Longmaxi Formation[D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry, Chinese Academy of Sciences).
    Luo C, Wang L S, Shi X W, et al. 2017. Biostratigraphy of the Wufeng to Longmaxi Formation at Well Ning 211 of Changning shale gas field[J]. Journal of Stratigraphy, 41(2): 142-152.
    Ma L, Chen H J, Gan K W, et al. 2004. Tectonics and marine petroleum geology in Southern China(Upper and Lower)[M]. Beijing: Geological Publishing House.
    Montgomery S L, Jarvie D M, Bowker K A, et al. 2005. Mississippian barnett shale, fort worth basin, north-central texas: gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 89(2): 155-175. doi: 10.1306/09170404042
    Nelson P H. 2009. Pore-throat sizes in sandstones, tight sandstones and shales[J]. AAPG Bulletin, 93(3): 329-340. doi: 10.1306/10240808059
    Nelson R A. 2001. Geologic analysis of naturally fractured reservoirs[M]. Gulf Professional Pub.
    Nie H K, Zhang J C, Zhang P X, et al. 2009. Shale gas reservoir characteristics of Barnett shale gas reservoir in Fort Worth Basin[J]. Geological Science and Technology Information, 28(2): 87-93.
    Pu B L, Jiang Y L, Wang Y, et al. 2010. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J]. Acta Petroleum Sinica, 31(2): 225-230.
    Pu B L. 2008. Analysis of the reservoir-forming conditions of shale gas potential in Sichuan Basin[D]. Beijing: China University of Petroleum.
    Su P D, Huang R Q, Deng H, et al. 2008. Fracture characteristics and development influencing factors of Ordovician reservoirs in the Tahe oilfield[J]. Natural Gas Industry,(6): 56-58, 147.
    Tang J G, Wu Y X, Zhao J Z, et al. 2008. Exploratory development and technology of shale gas reservoir in Sichuan Basin[J]. Drilling and Production Technology, 31(3): 38-42.
    Wang R Y, Ding W L, Zhang Y Q, et al. 2016. Analysis of developmental characteristics and dominant factors of fractures in lower cambrian marine shale reservoirs: a case study of niutitang formation in cen'gong block, southern China[J]. Journal of Petroleum Science & Engineering, 138: 31-49.
    Wang S Q, Chen G S, Dong D Z, et al. 2009. Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichuan Basin[J]. Natural Gas Industry, 29(5): 51-58.
    Wang Y M, Wang H K, Zhang C C, et al. 2017. Evaluation of fracture pores in the deep Wufeng-Longmaxi Formation in the southern Sichuan Basin[J]. Petroleum Exploration and Development, 44(4): 531-539.
    Wang Z C, Zhao W Z, Peng H Y. 2002. Characteristics of multi-source petroleum systems in Sichuan Basin[J]. Petroleum Exploration and Development, 29(2): 26-28.
    Wang Z C, Zhao W Z, Zhang L, et al. 2002. Tectonic sequence and natural gas exploration in the Sichuan Basin[M]. Beijing: Geological Publishing House.
    Warlick D. 2006. Gas shale and cbm development in north america[J]. Oil and Gas Financial Journal, 3(11): 1-5.
    Wei G Q, Liu D L, Zhang L, et al. 2005. The exploration region and natural gas accumulation in Sichuan Basin[J]. Natural Gas Geoscience, 16(4): 437-442.
    Wo Y J, Wang X W. 2009. Geologic configuration types of the middle-upper Yangtze region and their significance for hydrocarbon preservation in marine strata[J]. Oil and Gas Geology, 30(2): 177-187.
    Wu L M, Ding W L, Zhang J C, et al. 2011. Fracture prediction of organic-enriched shale reservoir in lower Silurian Longmaxi Formation of Southeastern Chongqing area[J]. Journal of Oil and Gas Technology, 33(9): 43-46.
    Wu Z H, Zuo Y J, Wang S Y, et al. 2017. Numerical study of multi-period palaeotectonic stress fields in lower cambrian shale reservoirs and the prediction of fractures distribution: a case study of the niutitang formation in Feng'gang No.3 block, south China[J]. Marine and Petroleum Geology, 80: 369-381. doi: 10.1016/j.marpetgeo.2016.12.008
    Xu X S, Liu W, Zhou D K, et al. 2009. Sedimentary facies of the lower Silurian in central and southeastern Guizhou province[J]. Journal of Palaeogeography, 11(1): 13-20.
    Zeng L, Wang H, Gong L, et al. 2010. Impacts of the tectonic stress field on natural gas migration and accumulation: a case study of the kuqa depression in the tarim basin, China[J]. Marine and Petroleum Geology, 27(7): 1616-1627. doi: 10.1016/j.marpetgeo.2010.04.010
    Zhang D, Ranjith P G, Perera M S A. 2016. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review[J]. Journal of Petroleum Science and Engineering, 143: 158-170. doi: 10.1016/j.petrol.2016.02.011
    Zhang J C, Jin Z J, Yuan M S. 2004. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 24(7): 15-18.
    Zhang J C, Nie H K, Xu B, et al. 2008. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry,(2): 151-156.
    Zhang S C, Zhu G Y. 2006. Gas accumulation characteristics and exploration potential of marine sediments in Sichuan Basin[J]. Acta Petrolei Sinica, 27(5): 1-8.
    Zhang Y G, Ma Z J, Yang K M, et al. 2007. The forecast of natural oil & gas potential in marine strata, Western Sichuan Basin, Southwest China[J]. Acta Geology Sinica, 81(8): 1041-1047.
    Zimmerman R W. 2005. Fluid flow in rock fractures[C]//Proceedings of the 11th International Conference on Computer Methods and Advances in Geomechanics. Turin, Italy: 89-107.
    Zou C N, Dong D Z, Wang S J, et al. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3
    Zou C N, Yang Z, He D B, et al. 2018. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 45(4): 575-587.
    Zou L C, Jing L R, Cvetkovic V. 2015. Roughness decomposition and nonlinear fluid flow in a single rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 75: 102-118. doi: 10.1016/j.ijrmms.2015.01.016
    程克明, 王世谦, 董大忠, 等. 2009.上扬子区下寒武统筇竹寺组页岩气成藏条件[J].天然气工业, 29(5): 40-44. doi: 10.3787/j.issn.1000-0976.2009.05.008
    董大忠, 王玉满, 黄旭楠, 等. 2016.中国页岩气地质特征、资源评价方法及关键参数[J].天然气地球科学, 27(9): 1583-1601.
    付常青. 2017.渝东南五峰组-龙马溪组页岩储层特征与页岩气富集研究[D].徐州: 中国矿业大学.
    高莉. 2019.黔北-渝南地区五峰-龙马溪页岩储层物性研究[D].北京: 中国地质科学院.
    黄籍中. 2009.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气藏, 21(2): 116-120. doi: 10.3969/j.issn.1673-8926.2009.02.025
    李德生. 2007.中国石油地质学的创新之路[J].石油与天然气地质, 28(1): 1-11. doi: 10.3321/j.issn:0253-9985.2007.01.001
    李新景, 胡素云, 程克明. 2007.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发, 34(4): 392-400. doi: 10.3321/j.issn:1000-0747.2007.04.002
    李新景, 吕宗刚, 董大忠, 等. 2009.北美页岩气资源形成的地质条件[J].天然气工业, 29(5): 27-32. doi: 10.3787/j.issn.1000-0976.2009.05.006
    刘树根, 徐国盛, 徐国强, 等. 2004.四川盆地天然气成藏动力学初探[J].天然气地球科学, 15(4): 323-330. doi: 10.3969/j.issn.1672-1926.2004.04.001
    刘宇. 2016.五峰-龙马溪组页岩的发育环境与页岩气潜力评价研究[D].广州: 中国科学院大学(中国科学院广州地球化学研究所).
    罗超, 王兰生, 石学文, 等. 2017.长宁页岩气田宁211井五峰组-龙马溪组生物地层[J].地层学杂志, 41(2): 142-152.
    马力, 陈焕疆, 甘克文, 等. 2004.中国南方大地构造和海相油气地质(上、下)[M].北京: 地质出版社.
    聂海宽, 唐玄, 边瑞康. 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报, 30(4): 484-491. doi: 10.3321/j.issn:0253-2697.2009.04.002
    蒲泊伶, 蒋有录, 王毅, 等. 2010.四川盆地下志留统五峰-龙马溪组页岩气成藏条件及有利地区分析[J].石油学报, 31(2): 225-230.
    蒲泊伶. 2008.四川盆地页岩气成藏条件分析[D].北京: 中国石油大学.
    苏培东, 黄润秋, 邓辉, 等. 2008.塔河油田奥陶系储层裂缝特征及发育影响因素[J].天然气工业,(6): 56-58, 147.
    唐嘉贵, 吴月先, 赵金洲, 等. 2008.四川盆地页岩气藏勘探开发与技术探讨[J].钻采工艺, 31(3): 38-42.
    王玉满, 王宏坤, 张晨晨, 等. 2017.四川盆地南部深层五峰组-龙马溪组裂缝孔隙评价[J].石油勘探与开发, 44(4): 531-539.
    汪泽成, 赵文智, 彭红雨. 2002a.四川盆地复合含油气系统特征[J].石油勘探与开发, 29(2): 26-28.
    汪泽成, 赵文智, 张林, 等. 2002b.四川盆地构造层序与天然气勘探[M].北京: 地质出版社.
    王世谦, 陈更生, 董大忠, 等. 2009.四川盆地下古生界页岩气藏形成条件与勘探前景[J].天然气工业, 29(5): 51-58.
    魏国齐, 刘德来, 张林, 等. 2005.四川盆地天然气分布规律与有利勘探领域[J].天然气地球科学, 16(4): 437-442.
    沃玉进, 汪新伟. 2009.中、上扬子地区地质结构类型与海相层系油气保存意义[J].石油与天然气地质, 30(2): 177-187.
    吴礼明, 丁文龙, 张金川, 等. 2011.渝东南地区下志留统龙马溪组富有机质页岩储层裂缝分布预测[J].石油天然气学报, 33(9): 43-46.
    许效松, 刘伟, 周棣康, 等. 2009.黔中-黔东南地区下志留统沉积相[J].古地理学报, 11(1): 13-20.
    张金川, 金之钧, 袁明生. 2004.页岩气成藏机理和分布[J].天然气工业, 24(7): 15-18.
    张金川, 聂海宽, 徐波, 等. 2008.四川盆地页岩气成藏地质条件[J].天然气工业,(2): 151-156.
    张水昌, 朱光有. 2006.四川盆地海相天然气富集成藏特征与勘探潜力[J].石油学报, 27(5): 1-8.
    张永刚, 马宗晋, 杨克明, 等. 2007.川西坳陷中段海相层系油气勘探潜力分析[J].地质学报, 81(8): 1041-1047.
    邹才能, 董大忠, 王社教, 等. 2010.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发, 37(6): 641-653.
    邹才能, 杨智, 何东博, 等. 2018.常规-非常规天然气理论、技术及前景[J].石油勘探与开发, 45(4): 575-587.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  160
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 修回日期:  2020-10-29
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回