基于CT扫描试验的珊瑚骨架灰岩孔隙结构特征研究

张标 雷学文 魏厚振 孟庆山 李肖肖 王新志

张标, 雷学文, 魏厚振, 等. 2021. 基于CT扫描试验的珊瑚骨架灰岩孔隙结构特征研究[J].工程地质学报, 29(6): 1692- 1699. doi: 10.13544/j.cnki.jeg.2020-584
引用本文: 张标, 雷学文, 魏厚振, 等. 2021. 基于CT扫描试验的珊瑚骨架灰岩孔隙结构特征研究[J].工程地质学报, 29(6): 1692- 1699. doi: 10.13544/j.cnki.jeg.2020-584
Zhang Biao, Lei Xuewen, Wei Houzhen, et al. 2021. Study on pore structure characteristics of coral skeleton limestone based on CT scans[J].Journal of Engineering Geology, 29(6): 1692-1699. doi: 10.13544/j.cnki.jeg.2020-584
Citation: Zhang Biao, Lei Xuewen, Wei Houzhen, et al. 2021. Study on pore structure characteristics of coral skeleton limestone based on CT scans[J].Journal of Engineering Geology, 29(6): 1692-1699. doi: 10.13544/j.cnki.jeg.2020-584

基于CT扫描试验的珊瑚骨架灰岩孔隙结构特征研究

doi: 10.13544/j.cnki.jeg.2020-584
基金项目: 

国家自然科学基金 41877260

国家自然科学基金 41877267

中国科学院战略性先导科技专项 XDA13010200

详细信息
    作者简介:

    张标(1996-),男,硕士生,主要从事珊瑚礁灰岩的物理力学特性研究工作. E-mail: 693625870@qq.com

    通讯作者:

    魏厚振(1980-),男,博士,副研究员,主要从事珊瑚岛礁岩土力学与工程研究工作. E-mail: hzwei@whrsm.ac.cn

  • 中图分类号: P642.3

STUDY ON PORE STRUCTURE CHARACTERISTICS OF CORAL SKELETON LIMESTONE BASED ON CT SCANS

Funds: 

the National Natural Science Foundation of China 41877260

the National Natural Science Foundation of China 41877267

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010200

  • 摘要: 为了探究分布于某岛礁珊瑚骨架灰岩的微观孔隙结构特征及其定性定量分析,选取6块有代表性的珊瑚骨架灰岩岩样,开展CT扫描试验,建立珊瑚骨架灰岩三维立体数字模型,获得三维数据体并开展孔隙结构特征的研究。结果表明:6块岩样整体孔隙率均值仅为3.30%,孔隙发育程度较小;岩样逐层面孔隙率有较大程度波动,面孔隙率较小,但其标准差却较大,体现了岩样较强的非均质性;对岩样三维模型中所提取的孔隙进行标记筛分,同时对孔隙体积与数量进行概率统计,结果表明珊瑚骨架灰岩中大孔隙数量虽少,但体积占比很大,存在极个别超大孔隙;通过球棒模型分析可知,配位数主要分布区间为0~2,说明珊瑚骨架灰岩的孔隙连通性较差,主要以独立孔隙和单连通孔隙为主,孔隙在x/y/z方向均无连通性,不存在潜在的流体运移通道。
  • 图  1  珊瑚骨架灰岩代表试样

    Figure  1.  Typical sample of coral skeleton limestone

    图  2  CT试验系统组成

    Figure  2.  CT test system composition

    图  3  岩样切片展示

    Figure  3.  Sample slice presentation

    图  4  XY方向切片图

    Figure  4.  XY slice diagram

    图  5  XY方向放大图

    Figure  5.  XY enlarged diagram

    图  6  岩样整体孔隙三维模型

    Figure  6.  3D model of integral porosity of sample

    图  7  阈值分割提取孔隙

    Figure  7.  Threshold segmentation to extract pores

    图  8  切片孔隙率随切片位置的变化关系

    Figure  8.  The relationship of slice porosity and slice location

    图  9  孔隙标记与筛分

    Figure  9.  Pore marking and screening

    图  10  孔隙直径分布规律

    Figure  10.  Pore diameter distribution law

    表  1  整体孔隙率对比分析

    Table  1.   Comparative analysis of overall porosity

    灰岩类型 马尔代夫礁灰岩(肖向阳等,2018) 珊瑚骨架灰岩
    整体孔隙率范围/% 30~49 1.98~5.71
    整体孔隙率均值/% 40 3.30
    下载: 导出CSV

    表  2  孔隙剖切面位置与面孔隙率

    Table  2.   Position and porosity of pore section surface

    序号 最大孔隙剖切面/个 最大面孔隙率/% 最小孔隙剖切面/个 最小面孔隙率/%
    岩样A 983 9.65 2696 0.27
    岩样B 354 9.38 2834 0.09
    岩样C 660 12.40 983 0.36
    岩样D 1471 19.33 2462 0.40
    岩样E 2958 8.67 457 0.04
    岩样F 200 7.97 2268 0.38
    下载: 导出CSV

    表  3  切片孔隙率离散程度分析

    Table  3.   Analysis of slices porosity dispersion degree

    岩样编号 标准差 方差 众数 中位数
    岩样A 2.303 5.302 0.900 2.293
    岩样B 2.289 5.239 0.150 1.409
    岩样C 3.719 13.827 0.371 1.138
    岩样D 5.750 33.066 0.824 2.651
    岩样E 1.647 2.711 0.065 1.661
    岩样F 2.035 4.141 0.546 2.922
    下载: 导出CSV

    表  4  孔喉结构分布参数表

    Table  4.   Parameters of pore throat structure distribution

    岩样编号 平均孔隙半径/μm 平均喉道半径/μm 平均喉道长度/μm 平均孔喉比 平均配位数 配位数主要分布区间
    岩样A 146.70 78.35 276.20 2.14 4 0~2
    岩样B 181.40 91.34 310.95 2.19 5 0~2
    岩样C 161.34 96.63 322.48 2.10 2 0~1
    岩样D 152.15 65.75 264.86 2.17 10 0~4
    岩样E 128.66 54.39 231.52 2.09 3 0~2
    岩样F 172.40 103.19 387.62 2.00 3 0~2
    下载: 导出CSV
  • Chen Y H,Xu Z L,Ye K K. 2020. Study on the damage law of granite mechanical properties under different water content conditions[J]. China Non-Metallic Mining Industry Herald,(3): 8-10. doi: 10.1088/1755-1315/455/1/012083
    Christe P, Turberg P, Labiouse V, et al. 2010. An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples[J]. Engineering Geology, 117 (3): 180-188. doi: 10.1016/j.enggeo.2010.10.016
    Duan Z G, Yang J, Ma B, et al. 2020. Physical and mechanical properties of deep reef limestone in Nansha, China[J]. Journal of Engineering Geology, 28 (S1): 70-76.
    Gan X Q, Yang S, Wang Z H, et al. 2020. Field test study of coral reef foundation in maldives[J]. Bulletin of Science and Technology, 36 (8): 75-80.
    Gao H L, Li J L, Hu C Z, et al. 2019. Development and application of loess macropore vectorization characterization software[J]. Journal of Engineering Geology, 27 (S1): 386-391.
    Gong C, Chen H. 2014. Study on acoustic emission amplitude and energy characteristics of red sandstone in different creep stages[J]. China Mining Magazine, 23 (10): 144-149. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201410037.htm
    Han W G, Xiao J, Cui Z D, et al. 2017. Acoustic emission characteristics of tight sandstone during failure processes with different confining pressures[J]. Journal of Engineering Geology, 25 (5): 1270-1278. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201705012.htm
    Huang X S, Cheng W Q, Lin W, et al. 2020. Research on 3D modeling of sandstone based on CT scanning images[J]. Computer Technology and Development, 30 (7): 115-119.
    Jin Z M, Zhou H W, Xue D J. 2020. Measurement of porosity and specific surface area of coal rock using CT images[J]. Journal of Xi'an University of Science and Technology, 40 (1): 133-140. http://www.researchgate.net/publication/344596514_Measurement_of_porosity_and_specific_surface_area_of_coal_rock_using_CT_images
    Liu H F, Zhu C Q, Cui X, et al. 2018. Experimental research on end bearing characteristics of rock-socketed pile in reef limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (S2): 4348-4355. http://www.researchgate.net/publication/331838540_Experimental_research_on_end_bearing_characteristics_of_rock-socketed_pile_in_reef_limestone
    Liu Z W, Li C, Hu X. 2012. Experimental study on engineering properties of coral reef calcareous rock[J]. Geotechnical Investigation & Surveying, 40 (9): 17-21. http://d.wanfangdata.com.cn/periodical/gckc201209005
    Tan F Y. 2007. The AE test study of calcareous sand[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
    Tian Y H, Chen Z, Huang W X, et al. 2020. P-wave velocity properties and its influencing factors of coral reef limestone in Nansha area[J]. Journal of Tropical Oceanography, 40 (1): 133-141.
    Wang X Z, Wang R, Meng Q S, et al. 2008. Research on characteristics of coral reef calcareous rock in Nansha Islands[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (11): 2221-2226. http://d.wanfangdata.com.cn/periodical/yslxygcxb200811007
    Wang Y, Li C H, Hu Y Z. 2018a. 3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography(CT)[J]. Engineering Geology, 248 : 61-69. http://www.sciencedirect.com/science/article/pii/S0013795218302266
    Wang Y, Li C H, Hu Y Z. 2018b. Use of X-ray computed tomography to investigate the effect of rock blocks on meso-structural changes in soil-rock mixture under triaxial deformation[J]. Construction and Building Materials, 164 : 386-399. doi: 10.1016/j.conbuildmat.2017.12.173
    Xiang J. 2020. Microstructure and pore distribution of the siltstone based on X-Ray scanning[J]. Yellow River, 42 (5): 112-115.
    Xiao X Y, Zhang R, Peng D F. 2018. Experimental study on geotechnical properties of coral reef in Maldives[J]. Railway Investigation and Surveying, 44 (2): 69-73.
    Ye W J, Li C Q, Yang G S, et al. 2017. Evolution of loess crack under action of dehumidification-humidification[J]. Journal of Engineering Geology, 25 (2): 376-383. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201702015.htm
    Yu K F. 2012. Coral reefs in the South China Sea: Their response to and records on past environmental changes[J]. Science China Earth Sciences, 42 (8): 1160-1172. http://earth.scichina.com:8080/sciDe/CN/article/downloadArticleFile.do?attachType=PDF&id=508131
    Zhao H T, Wang L R, Yuan J Y. 2016. Sustainable development of the coral reefs in the South China Sea Islands[J]. Tropical Geography, 36 (1): 55-65. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDDD201601009.htm
    Zhao J P, Cui L K, Chen H, et al. 2020. Quantitative characterization of rock microstructure by digital core based on CT scanning[J]. Geoscience, 34 (6): 1205-1213.
    Zhao R X, Lu S F, Xue H T, et al. 2019. Effect of SEM parameters on quantitative evaluation of shale micropores[J]. Oil & Gas Geology, 40 (5): 1141-1154.
    Zheng B N, Ding D Y, Zhang D, et al. 2019. CT Scanning and PFC modeling combined 3D method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 27 (3): 569-576. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903014.htm
    Zheng K, Meng Q S, Wang R, et al. 2020. Study on acoustic emission characteristics of coral skeleton limestone under triaxial compression[J]. Rock and Soil Mechanics, 41 (1): 205-213, 220.
    Zheng K. 2019. Study on engineering geology and acoustic emission characteristics of coral reef limestone[D]. Nanning: Guangxi University.
    陈玉华, 徐助龙, 叶孔凯. 2020. 不同含水率条件下花岗岩力学特性损伤规律研究[J]. 中国非金属矿工业导刊, (3): 8-10. doi: 10.3969/j.issn.1007-9386.2020.03.003
    段志刚, 杨佳, 马彬, 等. 2020. 中国南沙某岛礁深层礁灰岩物理力学特性[J]. 工程地质学报, 28 (S1): 70-76. doi: 10.13544/j.cnki.jeg.2020-504
    甘小泉, 杨松, 王振红, 等. 2020. 马尔代夫珊瑚礁地基现场试验研究[J]. 科技通报, 36 (8): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB202008017.htm
    高红灵, 李洁梁, 胡陈直, 等. 2019. 黄土大孔隙的矢量化表征软件开发及应用[J]. 工程地质学报, 27 (S1): 386-391. doi: 10.13544/j.cnki.jeg.2019156
    龚囱, 陈辉. 2014. 红砂岩不同蠕变阶段声发射振幅与能量特征研究[J]. 中国矿业, 23 (10): 144-149. doi: 10.3969/j.issn.1004-4051.2014.10.034
    韩伟歌, 肖吉, 崔振东, 等. 2017. 不同围压下致密砂岩破裂过程声发射特征研究[J]. 工程地质学报, 25 (5): 1270-1278. doi: 10.13544/j.cnki.jeg.2017.05.012
    黄贤胜, 成卫青, 林伟, 等. 2020. 基于CT扫描图像的砂岩石三维建模研究[J]. 计算机技术与发展, 30 (7): 115-119. doi: 10.3969/j.issn.1673-629X.2020.07.025
    金智敏, 周宏伟, 薛东杰. 2020. 煤岩CT图像的孔隙度和比表面积测量方法[J]. 西安科技大学学报, 40 (1): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202001020.htm
    刘海峰, 朱长歧, 崔翔, 等. 2018. 礁灰岩嵌岩桩的端承特性试验研究[J]. 岩石力学与工程学报, 37 (S2): 4348-4355. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2057.htm
    刘志伟, 李灿, 胡昕. 2012. 珊瑚礁礁灰岩工程特性测试研究[J]. 工程勘察, 40 (9): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201209006.htm
    谭峰屹. 2007. 钙质砂声发射试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所.
    田雨杭, 陈忠, 黄蔚霞, 等. 2020. 南沙海区珊瑚礁灰岩纵波波速特征及其影响因素[J]. 热带海洋学报, 40 (1): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202101014.htm
    王新志, 汪稔, 孟庆山, 等. 2008. 南沙群岛珊瑚礁礁灰岩力学特性研究[J]. 岩石力学与工程学报, 27 (11): 2221-2226. doi: 10.3321/j.issn:1000-6915.2008.11.007
    向杰. 2020. 基于CT扫描试验的砒砂岩孔隙分布特征研究[J]. 人民黄河, 42 (5): 112-115. doi: 10.3969/j.issn.1000-1379.2020.05.022
    肖向阳, 张荣, 彭登峰. 2018. 马尔代夫珊瑚礁岩土工程特性研究[J]. 铁道勘察, 44 (2): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC201802017.htm
    叶万军, 李长清, 杨更社, 等. 2017. 增湿-减湿作用下黄土裂隙演化规律研究[J]. 工程地质学报, 25 (2): 376-383. doi: 10.13544/j.cnki.jeg.2017.02.015
    余克服. 2012. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学(地球科学), 42 (8): 1160-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208003.htm
    赵焕庭, 王丽荣, 袁家义. 2016. 南海诸岛珊瑚礁可持续发展[J]. 热带地理, 36 (1): 55-65. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601009.htm
    赵建鹏, 崔利凯, 陈惠, 等. 2020. 基于CT扫描数字岩芯的岩石微观结构定量表征方法[J]. 现代地质, 34 (6): 1205-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006011.htm
    赵日新, 卢双舫, 薛海涛, 等. 2019. 扫描电镜分析参数对定量评价页岩微观孔隙的影响[J]. 石油与天然气地质, 40 (5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm
    郑博宁, 丁大勇, 张丹, 等. 2019. 含砾滑带土三维颗粒流模型建模方法研究[J]. 工程地质学报, 27 (3): 569-576. doi: 10.13544/j.cnki.jeg.2017-211
    郑坤, 孟庆山, 汪稔, 等. 2020. 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 41 (1): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001025.htm
    郑坤. 2019. 珊瑚礁灰岩工程地质及声发射特性研究[D]. 南宁: 广西大学.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  69
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-01-17
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回