钙质砂一维压缩回弹过程中声发射特征试验研究

吴永洁 魏厚振 李肖肖 王志兵 孟庆山 王新志

吴永洁, 魏厚振, 李肖肖, 等. 2021. 钙质砂一维压缩回弹过程中声发射特征试验研究[J].工程地质学报, 29(6): 1711-1721. doi: 10.13544/j.cnki.jeg.2020-601
引用本文: 吴永洁, 魏厚振, 李肖肖, 等. 2021. 钙质砂一维压缩回弹过程中声发射特征试验研究[J].工程地质学报, 29(6): 1711-1721. doi: 10.13544/j.cnki.jeg.2020-601
Wu Yongjie, Wei Houzhen, Li Xiaoxiao, et al. 2021. Experimental study of acoustic emission characteristics during one-dimensional compression rebound of calcareous sand[J].Journal of Engineering Geology, 29(6): 1711-1721. doi: 10.13544/j.cnki.jeg.2020-601
Citation: Wu Yongjie, Wei Houzhen, Li Xiaoxiao, et al. 2021. Experimental study of acoustic emission characteristics during one-dimensional compression rebound of calcareous sand[J].Journal of Engineering Geology, 29(6): 1711-1721. doi: 10.13544/j.cnki.jeg.2020-601

钙质砂一维压缩回弹过程中声发射特征试验研究

doi: 10.13544/j.cnki.jeg.2020-601
基金项目: 

国家自然科学基金 41877260

国家自然科学基金 41877267

中国科学院战略性先导科技专项 XDA13010200

详细信息
    作者简介:

    吴永洁(1995-),男,硕士生,主要从事钙质砂的物理力学特性研究工作. E-mail: 357755054@qq.com

    通讯作者:

    魏厚振(1980-),男,博士,副研究员,主要从事珊瑚岛礁岩土力学与工程研究工作. E-mail: hzwei@whrsm.ac.cn

  • 中图分类号: P588.21+2.3

EXPERIMENTAL STUDY OF ACOUSTIC EMISSION CHARACTERISTICS DURING ONE-DIMENSIONAL COMPRESSION REBOUND OF CALCAREOUS SAND

Funds: 

the National Natural Science Foundation of China 41877260

the National Natural Science Foundation of China 41877267

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010200

  • 摘要: 为了揭示钙质砂在一维压缩回弹作用下的压缩变形、颗粒破碎特性以及声发射规律,对钙质砂进行了3种相对密实度下不同粒组的一维压缩回弹实验和声发射实验。通过对不同粒组、不同相对密实度的钙质砂进行一维压缩实验和同步的声发射实时监测,获得其压缩、回弹和声发射特性,最后通过筛分获得实验后的颗粒粒径分布,得出相对破碎势Br。实验结果表明:钙质砂的压缩变形由颗粒位置调整和破碎两部分组成,其中颗粒破碎是产生压缩变形的主要因素,回弹曲线近似一条直线,表明压缩变形为不可恢复的塑形变形;压力相同时颗粒粒径越大,相对破碎势Br越大。颗粒形状不同致使颗粒间填充作用与嵌合作用不同,影响颗粒的滑移与重排列,进而影响颗粒的压缩变形。两种砂的声发射计数率随粒径增大而增大,且都集中出现在800~3200 kPa的压缩阶段,钙质砂的压缩变形及破碎特性与其声发射特征具有一致性,钙质砂声发射计数率与时间关系曲线和应力与时间关系曲线吻合较好,可通过声发射计数率与时间关系曲线来反映钙质砂的力学特性。钙质砂存在一个声发射事件最少的“临界孔隙比”,本次实验中1~2 mm钙质砂临界孔隙比为1.33~1.41,试样的初始孔隙比偏离该临界值时,声发射活动会有不同程度提高。
  • 图  1  钙质砂各粒组图

    a. 0.5~1 mm;b. 1~2 mm;c. 2~5 mm;d. 2~5 mm片状;e. 2~5 mm枝棒状;f. 2~5 mm块状

    Figure  1.  Each grain group diagram of calcareous sand

    图  2  声发射信号采集系统

    Figure  2.  Acoustic emission signal acquisition system

    图  3  相对破碎势示意图

    Figure  3.  A diagram of the relative breakage

    图  4  不同粒组试样的e-p曲线

    Figure  4.  e-p curves for different particle groups

    图  5  1~2 mm不同相对密实度的e-p曲线

    Figure  5.  1~2 mm e-p curves with different relatively tightness

    图  6  2~5 mm不同形状钙质砂的e-p曲线

    Figure  6.  2~5 mm e-p curves of 2~5 mm calcareous sand in different shapes

    图  7  钙质砂不同粒组压缩回弹后的级配曲线

    Figure  7.  The distribution curves of calcareous sand different grain groups after compressed and rebounded

    图  8  2~5 mm不同形状钙质砂压缩回弹后级配曲线

    Figure  8.  The distribution curves of different shapes of 2~5 mm calcareous sand after compression and rebound

    图  9  钙质砂、标准砂不同粒组声发射计数率、应力与时间曲线

    a. 0.5~1 mm钙质砂;b. 1~2 mm钙质砂; c. 2~5 mm钙质砂;d. 1~2 mm标准砂;e. 2~5 mm标准砂

    Figure  9.  Acoustic emission count rate, stress and time curve of calcareous sand and standard sand of different particle groups

    图  10  钙质砂、标准砂不同粒组声发射幅值、应力与时间曲线

    a. 0.5~1 mm钙质砂;b. 1~2 mm钙质砂;c. 2~5 mm钙质砂;d. 1~2 mm标准砂;e. 2~5 mm标准砂

    Figure  10.  Acoustic emission amplitude, stress and time curve of calcareous sand, standard sand of different particle groups

    图  11  钙质砂1~2 mm不同密实度声发射率、应力与时间曲线

    Figure  11.  Acoustic mission count rate, stress and time curve of 1~2 mm calcareous sand under different densities

    a. Dr=60%; b. Dr=70%; c. Dr=80%

    图  12  钙质砂1~2 mm不同密实度声发射幅值、应力与时间曲线

    Figure  12.  Acoustic emission amplitude, stress and time curve of 1~2 mm calcareous sand under different densities

    a. Dr=60%; b. Dr=70%; c. Dr=80%

    图  13  粒组、相对密实度Dr与相对破碎势Br的关系

    Figure  13.  The relationship between the relatively dense(Dr), and the relatively fragmented potential(Br) of different granular groups

    图  14  钙质砂、标准砂压缩(回弹)指数Cc(Cs)

    Figure  14.  Compression(rebound) index Cc(Cs) of calcareous sand and standard sand

    图  15  2~5 mm钙质砂不同形状相对破碎势

    Figure  15.  The relative breakage potential of 2~5 mm calcareous sand with different shapes

    表  1  试样的基本物理参数

    Table  1.   The basic physical parameters of the sample

    试验材料 粒径/mm Gs ρd,max/g·cm-3 ρd,min/g·cm-3
    钙质砂 0.5~1 2.82 1.32 1.06
    1~2 1.31 0.97
    2~5 1.30 0.90
    标准砂 1~2 2.68 1.54 1.25
    2~5 1.61 1.30
    下载: 导出CSV
  • Alba J L, Audibert J M. 1999. Pile design in calcareous sand and carbonaceous granular materials an historic overview[C]//Proceedings of the 2th International Conference on Engineering for Calcareous Sediments, 1 : 29-44.
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26 (6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806011.htm
    Chen Q Y, Sun J Z, Wang R. 2009. Triaxial experiment study of acoustic emission laws of calcareous sand[J]. Rock and Soil Mechanics, 30 (7): 2027-2030, 2036. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200907031.htm
    Coop M R. 1990. The mechanics of uncemented carbonate sands[J]. Géotechnique, 40 (4): 607-626. doi: 10.1680/geot.1990.40.4.607
    Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111 (10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    Koerner R M, Lord A E, et al. 1976. Acoustic emissions behavior of granular soil[J]. Journal of Geotechnical Engineering Division, ASCE, 102 (7): 761-773. doi: 10.1061/AJGEB6.0000297
    Koerner R M, Lord A E, et al. 1984. Determination of prestress in granular soils using AE[J]. Journal of Geotechnical Engineering Division, 110 (3): 346-358. doi: 10.1061/(ASCE)0733-9410(1984)110:3(346)
    Lee K L, Farhoomand I. 1967. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 4 (1): 68-86. doi: 10.1139/t67-012
    Li Y B, Li S, Liu X L, et al. 2020. Effect of particle breakage on compression properties of calcareous sands with oedometer tests[J]. Journal of Engineering Geology, 28 (2): 352-359.
    Ma L J, Li Z, Luo Z M, et al. 2019. Experimental study of strain rate effects on mechanical properties of coral particles[J]. Rock and Soil Mechanics, 40 (12): 4637-4643.
    Miura N, Sukeo O. 1979. Particle crushing of a decomposed granite soil under shear stresses[J]. Soil and Foundation, JSSMFE, 19 (3): 1-14. doi: 10.3208/sandf1972.19.3_1
    Pestana J M, Whittle A J. 2015. Compression model for cohesionless soils[J]. Géotechnique, 45 (4): 611-631. http://www.onacademic.com/detail/journal_1000035877590110_c0cf.html
    Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S1): 26-32. http://www.gcdz.org/EN/abstract/abstract10112.shtml
    Sun J Z, Wang R. 2003. Study on particle failure process of calcareous sand under triaxial compression[J]. Rock and Soil Mechanics, 24 (5): 822-825. http://www.cqvip.com/qk/94841x/200306/8744237.html
    Tan F Y. 2007. The AE test study of calcareous sand[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
    The National Standards Compilation Group of People's Republic of China. 1999. Standard for soil test method(GB/T 50123-1999)[S]. Beijing: China Planning Press.
    Wang G J, Yang C H, Zhang C, et al. 2009. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 30 (12): 3649-3654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200912015
    Wang R, Wu W J. 2019. Exploration and research on engineering geology properties of coral-reefs—Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27 (1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Wang X Z, Jiao Y Y, Wang R, et al. 2011. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 120(1-4): 40-47. doi: 10.1016/j.enggeo.2011.03.011
    Wang X Z, Wang R, Meng Q S, et al. 2009. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 30 (1): 147-151, 156. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200901035.htm
    Wang Y S, Ma L J, Li Z, et al. 2018. Investigation on the deformation mechanism of calcareous sand[J]. Protective Engineering, 40 (4): 31-35. http://en.cnki.com.cn/Article_en/CJFDTotal-FHGC201804007.htm
    Wei H Z, Zhao T, He J Q, et al. 2018. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
    Wei H Z, Zhao T, Meng Q S, et al. 2020. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
    Yang C, Wang K, Qiao L P, et al. 2019. Acoustic emission test of calcareous sands under undrained condition[J]. Coal Geology & Exploration, 47 (1): 144-148. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201901022.htm
    Zhang B S, Gu K, Li J W, et al. 2020. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 28 (4): 725-733.
    Zhang B, Chai S X, Wei H Z, et al. 2020. Influence of coral sand particle shape on the compression property of coarse grained calcareous soil[J]. Journal of Engineering Geology, 28 (1): 85-93.
    Zhang J M, Wang R, Shi X F, et al. 2005. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (18): 3327-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200518021.htm
    陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变强度影响研究[J]. 工程地质学报, 26 (6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    陈清运, 孙吉主, 汪稔. 2009. 钙质砂声发射特征的三轴试验研究[J]. 岩土力学, 30 (7): 2027-2030, 2036. doi: 10.3969/j.issn.1000-7598.2009.07.026
    李彦彬, 李飒, 刘小龙, 等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 28 (2): 352-359. doi: 10.13544/j.cnki.jeg.2019-283
    马林建, 李增, 罗棕木, 等. 2019. 珊瑚颗粒力学特性应变率效应试验研究[J]. 岩土力学, 40 (12): 4637-4643. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912010.htm
    沈建华, 汪稔. 2010. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 18 (S1): 26-32. http://www.gcdz.org/article/id/10112
    孙吉主, 汪稔. 2003. 三轴压缩条件下钙质砂的颗粒破裂过程研究[J]. 岩土力学, 24 (5): 822-825. doi: 10.3969/j.issn.1000-7598.2003.05.028
    谭峰屹. 2007. 钙质砂声发射试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所.
    汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 27 (1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    王光进, 杨春和, 张超, 等. 2009. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 30 (12): 3649-3654. doi: 10.3969/j.issn.1000-7598.2009.12.015
    王新志, 汪稔, 孟庆山, 等. 2009. 钙质砂室内载荷试验研究[J]. 岩土力学, 30 (1): 147-151, 156. doi: 10.3969/j.issn.1000-7598.2009.01.025
    王亚松, 马林建, 李增, 等. 2018. 钙质砂强度与变形机制研究[J]. 防护工程, 40 (4): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-FHGC201804007.htm
    杨超, 王凯, 乔丽平, 等. 2019. 不排水条件下钙质砂声发射试验研究[J]. 煤田地质与勘探, 47 (1): 144-148. doi: 10.3969/j.issn.1001-1986.2019.01.022
    张斌, 柴寿喜, 魏厚振, 等. 2020. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 28 (1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
    张丙树, 顾凯, 李金文, 等. 2020. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 28 (4): 725-733. doi: 10.13544/j.cnki.jeg.2019-312
    张家铭, 汪稔, 石祥锋, 等. 2005. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 24 (18): 3327-3331. doi: 10.3321/j.issn:1000-6915.2005.18.022
    中华人民共和国国家标准编写组. 1999. 土工试验方法标准(GB/T 50123-1999)[S]. 北京: 中国计划出版社.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  22
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 修回日期:  2020-12-20
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回