钙质砂与硅质砂液化特性对比试验研究

王刚 殷浩 郑含辉 杨饯

王刚,殷浩,郑含辉,等. 2021. 钙质砂与硅质砂液化特性对比试验研究[J]. 工程地质学报, 29(1): 69-76. doi: 10.13544/j.cnki.jeg.2020-624
引用本文: 王刚,殷浩,郑含辉,等. 2021. 钙质砂与硅质砂液化特性对比试验研究[J]. 工程地质学报, 29(1): 69-76. doi: 10.13544/j.cnki.jeg.2020-624
Wang Gang, Yin Hao, Zheng Hanhui, et al. 2021. Comparative experimental study on liquefaction characteristics of carbonate and silica sands[J]. Journal of Engineering Geology, 29(1): 69-76. doi: 10.13544/j.cnki.jeg.2020-624
Citation: Wang Gang, Yin Hao, Zheng Hanhui, et al. 2021. Comparative experimental study on liquefaction characteristics of carbonate and silica sands[J]. Journal of Engineering Geology, 29(1): 69-76. doi: 10.13544/j.cnki.jeg.2020-624

钙质砂与硅质砂液化特性对比试验研究

doi: 10.13544/j.cnki.jeg.2020-624
基金项目: 

国家自然科学基金 51679016

国家自然科学基金 52079012

重庆市研究生科研创新项目 GYB20032

详细信息
    作者简介:

    王刚(1978-),男,博士,教授,主要从事土的本构理论、土动力学及地震工程、数值分析等方面研究工作. E-mail: cewanggang@163.com

  • 中图分类号: P642.3

COMPARATIVE EXPERIMENTAL STUDY ON LIQUEFACTION CHARAC TERISTICS OF CARBONATE AND SILICA SANDS

Funds: 

the National Natural Science Foundation of China 51679016

the National Natural Science Foundation of China 52079012

Graduate Research and Innovation Foundation of Chongqing, China GYB20032

  • 摘要: 钙质砂颗粒具有形状不规则、多孔隙、强度低、易破碎等特点,较硅质砂表现出更为复杂的液化变形特性。本文对相同级配的钙质砂和硅质砂进行了物性试验、不排水循环三轴试验、轻型动力触探试验,研究两种砂在物理性质、抗液化能力和贯入阻力三方面的差异,分析实验结果得到结论如下:(1)钙质砂比硅质砂具有更大的孔隙比和内摩擦角,这与钙质砂颗粒特点相匹配;(2)砂土抗液化能力随着相对密度的增大而增大,相同相对密度下钙质砂比硅质砂具有更高的抗液化能力和抗变形能力;(3)砂土贯入阻力随着相对密度的增大而增大,相同相对密度下钙质砂比硅质砂具有更高的贯入阻力。综合不排水循环三轴试验和轻型动力触探试验的结果,指出采用陆源硅质砂地基上经验数据建立的基于贯入阻力的液化判别方法直接用于钙质砂地基可能偏保守。
  • 图  1  技术路线图

    Figure  1.  Research plan

    图  2  级配曲线

    Figure  2.  Gradation curves

    图  3  两种砂颗粒的电镜扫描照片

    a.钙质砂;b.硅质砂

    Figure  3.  SEM photos of the two types of sand particles

    图  4  不排水循环三轴试验下钙质砂与硅质砂典型应力、应变、孔压时程曲线

    Figure  4.  Typical time series of carbonate and silica sands under undrained cyclic triaxial tests

    图  5  不排水循环三轴试验下应力-应变曲线

    Figure  5.  Stress-strain curves under undrained cyclic triaxial tests

    图  6  不同相对密度下钙质砂的动强度曲线

    Figure  6.  Liquefaction resistance curves of carbonate sand at different relative densities

    图  7  不同相对密度下硅质砂的动强度曲线

    Figure  7.  Liquefaction resistance curves of silica sand at different relative densities

    图  8  相同相对密度的钙质砂和硅质砂的动强度曲线对比

    Figure  8.  Comparison of liquefaction resistance between carbonate and silica sands

    图  9  基于标准贯入试验的液化判别图表

    Figure  9.  Liquefaction evaluation chart based on SPT-N

    图  10  轻型动力触探试验装置示意图

    Figure  10.  Apparatus for light dynamic penetrometer test

    图  11  钙质砂与硅质砂的N10-Dr关系对比

    Figure  11.  Comparison the N10-Dr relationships of carbonate and silica sands

    图  12  循环周次Ncyc=15时CRRDr关系图

    Figure  12.  Relationships between CRR and Dr at Ncyc=15

    图  13  液化触发曲线对比

    Figure  13.  Comparison of liquefaction triggering curves

    表  1  物性指标

    Table  1.   Physical properties

    试验材料 比重
    Gs
    最大干密度
    ρd max/g·cm-3
    最小干密度
    ρd min/g·cm-3
    最大孔隙比
    emax
    最小孔隙比
    emin
    内摩擦角
    /(°)
    钙质砂 2.791 1.482 1.250 1.232 0.883 42.0
    硅质砂 2.649 1.796 1.428 0.855 0.475 35.2
    下载: 导出CSV
  • AbuFarsakh M, Alshibi K, Nazzal M, et al. 2004. Assessment of in-situ test technology for construction control of base courses and embankments[R]. Louisiana: Louisiana Transportation Research Center.
    Agaiby S, Salem M, Mamlouk H. 2013. Liquefaction susceptibility of loose calcareous sand of northern coast in Egypt La susceptibilité à la liquéfaction du sable calcaire lâche de la côte nord en Égypte[C]//International Conference on Soil Mechanics & Geotechnical Engineering.
    Brandes H G, Seidman J. 2008. Dynamic and static behavior of calcareous sands[C]//ISOPE-2008International offshore and polar engineering conference. Hawai'i, USA: Department of Civil and Environmental Engineering, University of Hawai'i Honolulu.
    Brandes H G. 2011. Simple shear behavior of calcareous and quartz sands[J]. Geotechnical and Geological Engineering, 29(1): 113-126. doi: 10.1007/s10706-010-9357-x
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806011.htm
    Green R, Olson S, Cox B, et al. 2011. Geotechnical aspects of failures at Port-au-Prince seaport during the 12 January 2010 Haiti Earthquake[J]. Earthquake Spectra, 27(S1): S43-S65. https://www.researchgate.net/publication/272566219_Geotechnical_Aspects_of_Failures_at_Port-au-Prince_Seaport_during_the_12_January_2010_Haiti_Earthquake
    Ge Y X, Zhang J, Zheng W T, et al. 2019. SPT-based soil liquefaction potential assessment: model uncertainty calibration and probabilistic liquefaction prediction[J]. Journal of Engineering Geology, 27(S1): 489-496.
    Kaggwa W, Poulos H. 1990. Comparison of the behaviour of dense carbonate sediments and silica sand in cyclic triaxial tests[R]. Sydney: University of Sydney, School of Civil and Mining Engineering.
    Liu C Q, Wang R. 1998. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 19(1): 32-37, 44. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX199801005.htm
    Li J G. 2005. Experimental research on dynamic behavior of saturated calcareous sand under wave loading[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
    Lin L, Li S, Liu X, et al. 2019. Prediction of relative density of carbonate soil by way of a dynamic cone penetration test[J]. Géotechnique Letters, 9(2): 1-7. doi: 10.1680/jgele.18.00165
    Mejia L, Yeung R. 1995. Liquefaction of coralline soils during the 1993 Guam Earthquake[C]//ASCE Earthquake-Induced Movements and Seismic Remediation of Existing Foundations and Abutments.
    Mao X, Fahey M. 2003. Behaviour of calcareous soils in undrained cyclic simple shear[J]. Géotechnique, 53(8): 715-728. doi: 10.1680/geot.2003.53.8.715
    Meng Q S, Qin Y, Wang R. 2012 Liquefaction characteristics and mechanism of coral reef sediments[J]. Soil Engineering and Foundation, 26(1): 21-24. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TGJC201201006.htm
    Nicholson P G. 2006. Liquefaction evaluation discrepancies in tropical lagoonal soils[J]. Geotechnical & Geological Engineering, 24(5): 1259-1269. doi: 10.1007/s10706-005-1560-9
    Seed H, Lee K. 1966. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundations Division, 92(SM6): 105-134.
    Seed H, Idriss I, Arango I. 1983. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 109(3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    Sandoval E, Pando M. 2012. Experimental assessment of the liquefaction resistance of calcareous biogenous sands[J]. Earth ences Research Journal, 16(1): 55-63. doi: 10.1007/s11038-012-9396-9
    Shahnazari H, Jafarian Y, Tutunchian M, et al. 2016. Undrained cyclic and monotonic behavior of Hormuz calcareous sand using hollow cylinder simple shear tests[J]. International Journal of Civil Engineering, 14(4): 209-219. doi: 10.1007/s40999-016-0021-6
    The Professional Standards Compilation Group of People′s Republic of China. 2016. Code for seismic design of buildings(GB50011-2010)[S]. Beijing: China Architecture and Building Press.
    Vahdani S, Pyke R, Siriprusanen U. 1994. Liquefaction of calcareous sands and lateral spreading experienced in Guam as a result of the 1993 Guam earthquake[J]. Technical Report Nceer.
    Wang G, Zhang J M. 2007a. A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 29(1): 51-59. doi: 10.1016/S1874-8651(08)60042-3
    Wang G, Zhang J M. 2007b. Recent advances in seismic liquefaction research[J]. Advances in Mechanics, 37(4): 575-589. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ200704008.htm
    Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs——Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27(1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Wang G, Wang Z, Ye Q, et al. 2020. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 20(3): 04020012.1-04020012.12. doi: 10.1061/(ASCE)GM.1943-5622.0001601
    Wang F W. 2019. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes[J]. Journal of Engineering Geology, 27(1): 98-107. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901011.htm
    Xue R K, Li S, Lin L, et al. 2020. Physical indexes of carbonate sand with dynamic prenetration test[J]. Journal of Engineering Geology, 28(4): 734-739.
    Yu H Z, Wang R. 1999. The cyclic strength text research on calcareous sand[J]. Rock and Soil Mechanics, 20(4): 6-11. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX199904001.htm
    Yu H Z. 2006. Experimental research on dynamic behavior of saturater calcareous sand under complex stress conditions[D]. Wuhan: Huazhong University of Science and Technology.
    Youd T, Idriss I. 2001. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 127(4): 297-313. doi: 10.1061/(asce)1090-0241(2001)127:4(297)
    Zhu C Q, Chen H Y, Meng Q S, et al. 2014. Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 35(7): 1831-1836.
    Zhang Y M, Wan L L, Zhang X D, et al. 2018. Experiment on static liquefaction characteristics of saturated silt soil[J]. Journal of Engineering Geology, 26(4): 861-865.
    Zhang Q, Li Y F, Hou L L, et al. 2020. Research on dynamic triaxial text of sand liquefaction based on microstructure[J]. Journal of Engineering Geology, 28(S1): 19-24.
    陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变及强度影响研究[J]. 工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    葛一荀, 张洁, 郑文棠, 等. 2019. 基于标准贯入试验的土体液化判别准则模型误差分析及土体液化概率预测[J]. 工程地质学报, 27(S1): 489-496. doi: 10.13544/j.cnki.jeg.2019123
    刘崇权, 汪稔. 1998. 钙质砂物理力学性质初探[J]. 岩土力学, 19(1): 32-37, 44. http://www.cnki.com.cn/Article/CJFDTotal-YTLX199801005.htm
    李建国. 2005. 波浪荷载作用下饱和钙质砂动力特性的试验研究[D].武汉: 中国科学院.
    孟庆山, 秦月, 汪稔. 2012. 珊瑚礁钙质沉积物液化特性及其机理研究[J]. 土工基础, 26(1): 21-24. doi: 10.3969/j.issn.1004-3152.2012.01.007
    汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30a[J]. 工程地质学报, 27(1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    王刚, 张建民. 2007a. 砂土液化大变形的弹塑性循环本构模型[J]. 岩土工程学报, 29(1): 51-59. doi: 10.3321/j.issn:1000-4548.2007.01.008
    王刚, 张建民. 2007b. 地震液化问题研究进展[J]. 力学进展, 37(4): 575-589. doi: 10.3321/j.issn:1000-0992.2007.04.007
    汪发武. 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J]. 工程地质学报, 27(1): 98-107. doi: 10.13544/j.cnki.jeg.2019-034
    薛润坤, 李飒, 林澜, 等. 2020. 基于动力触探钙质砂物理性质指标评价研究[J]. 工程地质学报, 28(4): 734-739. doi: 10.13544/j.cnki.jeg.2019-301
    虞海珍, 汪稔. 1999. 钙质砂动强度试验研究[J]. 岩土力学, 20(4): 6-11. doi: 10.3969/j.issn.1000-7598.1999.04.002
    虞海珍. 2006. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学.
    朱长歧, 陈海洋, 孟庆山, 等. 2014. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 35(7): 1831-1836. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201407003.htm
    中华人民共和国行业标准编写组. 2016. 建筑抗震设计规范(GB50011-2010)[S]. 北京: 中国建筑工业出版社.
    张艳美, 万丽丽, 张旭东, 等. 2018. 饱和粉土静态液化性能试验研究[J]. 工程地质学报, 26(4): 861-865. doi: 10.13544/j.cnki.jeg.2017-373
    张庆, 李云峰, 侯莉莉, 等. 2020. 基于微观结构的砂土液化动三轴试验研究[J]. 工程地质学报, 28(增): 19-24. doi: 10.13544/j.cnki.jeg.2020-323
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  133
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 修回日期:  2021-01-07
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回