基于钻孔高压压水试验非线性流模拟计算错动带渗透参数

周志芳 王哲 李雅冰 沈琪 李思佳 陈朦

周志芳,王哲,李雅冰,等. 2021.基于钻孔高压压水试验非线性流模拟计算错动带渗透参数[J].工程地质学报,29(1):197-204. doi:10.13544/j.cnki.jeg.2020-626 doi: 10.13544/j.cnki.jeg.2020-626
引用本文: 周志芳,王哲,李雅冰,等. 2021.基于钻孔高压压水试验非线性流模拟计算错动带渗透参数[J].工程地质学报,29(1):197-204. doi:10.13544/j.cnki.jeg.2020-626 doi: 10.13544/j.cnki.jeg.2020-626
Zhou Zhifang, Wang Zhe, Li Yabing, et al. 2021. Calculating the permeability parameters of the staggered zone based on the nonlinear flow simulation of the high-pressure packer test[J]. Journal of Engineering Geology, 29(1): 197-204. doi: 10.13544/j.cnki.jeg.2020-626
Citation: Zhou Zhifang, Wang Zhe, Li Yabing, et al. 2021. Calculating the permeability parameters of the staggered zone based on the nonlinear flow simulation of the high-pressure packer test[J]. Journal of Engineering Geology, 29(1): 197-204. doi: 10.13544/j.cnki.jeg.2020-626

基于钻孔高压压水试验非线性流模拟计算错动带渗透参数

doi: 10.13544/j.cnki.jeg.2020-626
基金项目: 

国家自然科学基金重大研究计划 91747204

详细信息
    作者简介:

    周志芳(1962-),男,教授,博士生导师,主要从事水文地质方面的科研与教学工作. E-mail:zhouzf@hhu.edu.cn

    通讯作者:

    王哲(1996-),男,硕士生,主要从事水文地质方面的研究工作. E-mail:wz2014@hhu.edu.cn

  • 中图分类号: P642.3

CALCULATING THE PERMEABILITY PARAMETERS OF THE STAG-GERED ZONE BASED ON THE NONLINEAR FLOW SIMULATION OF THE HIGH-PRESSURE PACKER TEST

Funds: 

the Major Research Plan of National Natural Science Foundation of China 91747204

  • 摘要: 高坝大库建设过程中,往往需要确定工程区附近岩土体在高水头作用下的渗透参数,钻孔高压压水试验是其中最常用的方法之一。与其他试验相比,高压压水试验具有很高的水头和渗流速度,很容易出现非线性渗流,这种情况下达西流公式不再适用,因此,亟需一种基于钻孔高压压水试验确定非线性参数的求解方法。本文建立了钻孔高压压水试验的非线性流数学模型,采用有限差分的方法,得到了阶梯水头变化情况下非线性流数学模型的数值解,并验证了该数值解的准确性。在此基础上讨论了非线性参数对水头和流速的影响,结合白鹤滩水电站玄武岩错动带现场高压压水试验,进一步验证了该方法的可靠性。结果表明,当非线性参数k和径向距离r保持不变时,非线性参数β越大则试验过程中的水头h和流速v都越小;当非线性参数β和径向距离r保持不变时,非线性参数k越大则试验过程中的水头h越小、流速v越大;且较大的βk均会使得高压压水试验能更快地趋于稳定状态。如果仍按照达西流公式进行计算,将会高估透水介质中的水头,进而高估玄武岩错动带结构面抵抗渗透破坏的能力,最终对工程稳定性产生不利影响。在白鹤滩水电站进行的钻孔高压压水试验过程中地下水发生了非线性运动,求得C2错动带的非线性参数β=1.62 min ·m-1k=9.60×10-3m ·min-1,该方法对于现场确定错动带非线性参数有较好的适用性。
  • 图  1  高压压水试验系统示意图

    Figure  1.  The schematic diagram of high-pressure packer test system

    图  2  高压压水试验过程中的压力假定值

    Figure  2.  The assumed pressure schedule of the packer test

    图  3  非线性参数βk对水头变化的影响

    a. β对水头变化的影响;b. k对水头变化的影响

    Figure  3.  The influence of nonlinear parameters β and k on the change of water head

    图  4  非线性参数βk对流速变化的影响

    a. β对流速变化的影响;b. k对流速变化的影响

    Figure  4.  The influence of nonlinear parameters β and k on the change of flow velocity

    图  5  左岸厂房C2截渗洞C2错动带照片及示意图

    a. C2错动带照片;b. C2错动带示意图

    Figure  5.  The photo and schematic diagram of C2 staggered zone at the interception tunnel of the left bank plant

    图  6  CZK57钻孔组布置及剖面示意图

    a. CZK57钻孔现场布置图;b. CZK57钻孔布置剖面图

    Figure  6.  The layout and profile diagram of CZK57 borehole

    图  7  高压压水试验过程中流量及压力变化情况(CZK57-1)

    Figure  7.  The changes of flow rate and pressure during the packer test(CZK57-1)

    图  8  试验孔流量观测值与拟合结果

    Figure  8.  The measured flow rate of the test borehole and the fitting results

    表  1  变量赋值表

    Table  1.   Variable assignment table

    含义 变量赋值 含义 变量赋值
    节点个数 N=500 试验孔半径 rw=0.037 5 m
    近似表示无穷远 re=1×108 m 错动带厚度 M=0.4 m
    错动带储水系数 μ*=1×10-4
    下载: 导出CSV
  • Bi H W, Hu S H, Qiao T. 2018. Analysis of nonlinear seepage and study of permeability stability on surrounding rock of high-pressure manifold for high-head pumped storage hydropower station[J]. Water Resources and Hydropower Engineering, 49(6): 171-178.
    Chen Y F, Liu M M, Hu S H, et al. 2015. Non-Darcy's law-based analytical models for data interpretation of high-pressure packer tests in fractured rocks[J]. Engineering Geology, 199: 91-106. doi: 10.1016/j.enggeo.2015.10.011
    Huang Y, Zhou L T, Zhou Z F. 2018. Equations for permeability variation of fractured rock mass under high water pressure[J]. Journal of Engineering Geology, 26(6): 1433-1438.
    Huang Y, Zhou Z F, Fu S, et al. 2013. Study on variation of rock mass permeability with high pressure permeability test[J]. Journal of Engineering Geology, 21(6): 828-834.
    Huang Z, Jiang Z Q, Cao D T, el al. 2014. Study of impermeability of rock stratum based on water injectiion test[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S2): 3573-3580.
    Jacob C E, Lohman S W. 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer[J]. Transactions, American Geophysical Union, 33(4): 559-569. doi: 10.1029/TR033i004p00559
    Li Y B, Zhou Z F, Zhuang C, et al. 2020. Non-Darcian effect on a variable-rate pumping test in a confined aquifer[J]. Hydrogeology Journal, 28(8): 2853-2863. doi: 10.1007/s10040-020-02223-w
    Liu M M, Hu S H, Chen Y F, et al. 2016. An analytical model for nonlinear flow parameters of fractured rock masses based on high pressure packer tests[J]. Journal of Hydraulic Engineering, 47(6): 752-762.
    Meng R Z, Hu S H, Chen Y F, et al. 2014. Permeability of non-darcian flow in fractured rock mass under high seepage pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1756-1764.
    Quinn P M, Cherry J A, Parker B L. 2020. Relationship between the critical Reynolds number and aperture for flow through single fractures: Evidence from published laboratory studies[J]. Journal of Hydrology, 581: 124384. doi: 10.1016/j.jhydrol.2019.124384
    Quinn P M, Parker B L, Cherry J A. 2011. Using constant head step tests to determine hydraulic apertures in fractured rock[J]. Journal of Contaminant Hydrology, 126(1-2): 85-99. doi: 10.1016/j.jconhyd.2011.07.002
    Sen Z. 1989. Nonlinear flow toward wells[J]. Journal of Hydrology Engineering-ASCE, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115:2(193)
    Wang H B, Zhang Q S, Liu R T, et al. 2018. Inverse analysis of seepage field from packer permeability test[J]. Rock and Soil Mechanics, 39(3): 985-992.
    Wang Q G, Hu Y, Shan S. 2018. Serious deformation risk and stability analysis of landslide induced by improper construction in Gushan hydropower station[J]. Journal of Engineering Geology, 26(4): 989-998.
    Wang Q R, Zhan H B, Wang Y X. 2015. Non-Darcian effect on slug test in a leaky confined aquifer[J]. Journal of Hydrology, 527: 747-753. doi: 10.1016/j.jhydrol.2015.05.038
    Wen Z, Huang G H, Zhan H B. 2008a. Non-Darcian flow to a well in an aquifer-aquitard system[J]. Advances in Water Resources, 31(12): 1754-1763. doi: 10.1016/j.advwatres.2008.09.002
    Wen Z, Huang G H, Zhan H B. 2008b. An analytical solution for non-Darcian flow in a confined aquifer using the power law function[J]. Advances in Water Resources, 31(1): 44-55. doi: 10.1016/j.advwatres.2007.06.002
    Wen Z, Huang G H, Zhan H B. 2009. A numerical solution for non-Darcian flow to a well in a confined aquifer using the power law function[J]. Journal of Hydrology, 364(1-2): 99-106. doi: 10.1016/j.jhydrol.2008.10.009
    Wen Z, Huang G H, Zhan H B. 2011. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J]. Hydrogeology Journal, 19(3): 563-572. doi: 10.1007/s10040-011-0709-2
    Wen Z, Liu K, Chen X L. 2013. Approximate analytical solution for non-Darcian flow toward a partially penetrating well in a confined aquifer[J]. Journal of Hydrology, 498: 124-131. doi: 10.1016/j.jhydrol.2013.06.027
    Whitaker S. 1996. The Forchheimer equation: A theoretical development[J]. Transport in Porous Media, 25(1): 27-61. doi: 10.1007/BF00141261
    Yang Z B, Dong S N. 2018. Study on quantitative evaluation of grouting effect by water pressure test[J]. Journal of China Coal Society, 43(7): 2021-2028.
    Zhang Z, Nemcik J. 2013. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 477: 139-151. doi: 10.1016/j.jhydrol.2012.11.024
    Zhao W H, Liu Z, Zhang W X. 2018. Development mode and formation mechanism of middle-lower dip joints at large hydropower station dam site in southwestern China[J]. Journal of Engineering Geology, 26(6): 1724-1734.
    Zhou C, Zhao X, Chen Y, et al. 2018. Interpretation of high pressure pack tests for design of impervious barriers under high-head conditions[J]. Engineering Geology, 234: 112-121. doi: 10.1016/j.enggeo.2018.01.006
    Zhou Z F, Li S J, Wang Z, et al. 2020a. Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 42(3): 430-437.
    Zhou Z F, Shen Q, Shi A C, et al. 2020b. Prediction and prevention of seepage failure in interlayer staggered zone at left bank of Baihetan hydropower station[J]. Journal of Engineering Geology, 28(2): 211-220.
    毕宏伟, 胡少华, 乔彤. 2018.高水头抽水蓄能电站高压岔管围岩非线性渗流分析及渗透稳定性研究[J].水利水电技术, 49(6): 171-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201806024.htm
    黄勇, 周麟桐, 周志芳. 2018.高水压力作用下裂隙岩体渗透性的变化研究[J].工程地质学报, 26(6): 1433-1438. doi: 10.13544/j.cnki.jeg.2017-348
    黄勇, 周志芳, 傅胜, 等. 2013.基于高压压水试验的岩体透水率变化研究[J].工程地质学报, 21(6): 828-834. doi: 10.3969/j.issn.1004-9665.2013.06.003
    黄震, 姜振泉, 曹丁涛, 等. 2014.基于钻孔压水试验的岩层阻渗能力研究[J].岩石力学与工程学报, 33(S2): 3573-3580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2023.htm
    刘明明, 胡少华, 陈益峰, 等. 2016.基于高压压水试验的裂隙岩体非线性渗流参数解析模型[J].水利学报, 47(6): 752-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201606005.htm
    孟如真, 胡少华, 陈益峰, 等. 2014.高渗压条件下基于非达西流的裂隙岩体渗透特性研究[J].岩石力学与工程学报, 33(9): 1756-1764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409005.htm
    王洪波, 张庆松, 刘人太, 等. 2018.基于压水试验的地层渗流场反分析[J].岩土力学, 39(3): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803027.htm
    王启国, 胡义, 陕硕. 2018.孤山水电站不当施工诱发滑坡重大变形险情与稳定性分析[J].工程地质学报, 26(4): 989-998. doi: 10.13544/j.cnki.jeg.2017-364
    杨志斌, 董书宁. 2018.压水试验定量评价注浆效果研究[J].煤炭学报, 43(7): 2021-2028. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807027.htm
    赵伟华, 刘智, 张维熙. 2018.西南某大型水电站中缓倾角裂隙发育模式及成因机制分析[J].工程地质学报, 26(6): 1724-1734. doi: 10.13544/j.cnki.jeg.2017-116
    周志芳, 李思佳, 王哲, 等. 2020a.白鹤滩水电站错动带非线性渗透参数的原位试验确定[J].岩土工程学报, 42(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003006.htm
    周志芳, 沈琪, 石安池, 等. 2020b.白鹤滩水电工程左岸玄武岩层间错动带渗透破坏预测与防治模拟[J].工程地质学报, 28(2): 211-220. doi: 10.13544/j.cnki.jeg.2019-574
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  123
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 修回日期:  2021-01-30
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回