CHINESE AND ASTM STANDARD PENETRATION TESTS AT SAND SITE: PENETRATION ENERGY ANALYSIS AND CORRELATION OF BLOW COUNTS
-
摘要: 本文进行了美国《标准贯入测试和对开管取样的标准试验方法》(ASTM D1586-11)(美标)和中国《岩土工程勘察规范》(GB 50021-2001)(国标)标准贯入原位测试对比试验,获得了美标、国标标贯对比数据。标贯锤击能量分析表明,美标锤击能量较国标高。利用经验贝叶斯克里金插值法考虑锤击数的空间变异性,将不同空间位置的锤击数据转化到同一位置进行比较,分别建立了考虑与不考虑克里金插值误差的美标与国标标准贯入转换关系模型,发现考虑插值误差后转换模型的模型误差显著降低。对境外液化数据库的分析表明,当采用本文提出的标准贯入转换关系后,境外液化案例与我国《建筑抗震设计规范》(GB 50011-2010)中的液化判别方法符合程度更高。Abstract: This paper examines the Standard Penetration Tests(SPTs) according to Standard Test Method for Standard Penetration Test(SPT) and Split-Barrel Sampling of Soils(ASTM D1586-11) and Chinese Code for Investigation of Geotechnical Engineering(GB 50021-2001). It conducts the SPT at a sand site in Guangdong province,China. It is found that tests conducted according to ASTM D1586-11 have higher penetration energy than those conducted according to GB 50021-2001. To consider the spatial variability of the blow counts,an empirical Bayesian Kriging method is used to interpolate the blow counts measured through tests conducted according to GB 50021-2001 at the locations where tests according to ASTM D1586-11 are conducted. The maximum likelihood method is used to calibrate the relationship between the blow counts measured from the two types of tests with and without consideration of the interpolation error. After the interpolation error is considered,the model uncertainty of the relationship between blow counts measured through the two types of tests is significantly reduced. Through the conversion relationship suggested in this paper,the liquefaction phenomena observed in a liquefaction database with case histories collected outside mainland China become more consistent with the liquefaction potential assessment model specified in the Chinese Code for Seismic Design of Buildings Code(GB 50011-2010).
-
表 1 现场试验采用的设备参数
Table 1. Apparatus used in the experiment
国标规
定参数国标实
际参数美标规
定参数美标实
际参数落锤形式 穿心锤 安全锤 落锤质量/kg 63.5 63.6 63.5±1 64.2 锤垫质量/kg — 4.9 — — 落锤钻杆等
总质量/kg— 91.2 — 83.8 贯入器管靴
刃口厚度/mm1.6 1.6 2.5 2.5 钻杆 直径Φ 42,相对弯曲<1/1000 直径Φ 42,单位质量6.27 kg·m-1 直径Φ41.2,单位质量4.5~7.5 kg·m-1 直径Φ 42,单位质量6.27kg·m-1 表 2 美标、国标标贯未修正锤击数均值沿深度变化的情况
Table 2. Comparison between the mean values of the original blow counts of ASTM and GB at the same depth interval
深度范围/m 国标击数均值 美标击数均值 美标/国标 0.5~2.0 3.56 2.94 0.83 2.0~3.5 3.80 5.91 1.55 3.5~5.0 3.98 1.75 0.44 5.0~6.5 7.79 4.97 0.64 6.5~8.0 7.18 7.21 1.00 8.0~9.5 24.56 19.91 0.81 9.5~11.0 15.34 12.86 0.84 平均 0.87 表 3 相同深度(N1)60和NG的均值对比情况
Table 3. Comparison between the mean value of (N1)60 and NG at the same depth interval
深度范围/m NG均值 (N1)60均值 (N1)60/NG 0.5~2.0 3.56 6.60 1.85 2.0~3.5 3.80 13.24 3.48 3.5~5.0 3.98 3.65 0.92 5.0~6.5 7.79 9.53 1.22 6.5~8.0 7.18 14.09 1.96 8.0~9.5 24.56 35.99 1.47 9.5~11.0 15.34 22.03 1.44 表 4 不同半变异函数、数据变换、趋势项组合的交叉验证结果比较
Table 4. Comparison of the cross-validation results under different combinations of semivariance function,data transformation and trend removal
模型
编号半变异
函数趋势项
移除数据
变换均方根
误差95%置信
区间占比平均
CRPS1 K-Bessel 第一阶 无 0.429 95 0.234 2 K-Bessel 第一阶 经验法 0.468 95 0.237 3 消减函数 第一阶 经验法 0.482 94 0.244 4 消减函数 第一阶 无 0.453 95 0.246 5 指数函数 第一阶 经验法 0.488 94 0.246 表 5 不考虑插值误差的(N1)60和NG的转换关系参数
Table 5. Estimated parameters for the relationships between (N1)60 and NG without considering the interpolation error
函数形式 a b σε BIC 线性函数 0.296 1.000 0.426 47.948 幂函数 0.393 0.948 0.425 51.236 表 6 考虑插值误差的(N1)60和NG转换关系参数
Table 6. Estimated parameters for the relationship between the(N1)60 and NG considering the interpolation error
函数形式 a b σε BIC 线性函数 0.283 1.000 0.194 46.678 幂函数 0.434 0.917 0.227 49.422 表 7 采用转换关系与未采用转换关系方法的判别结果比较
Table 7. Results of the liquefaction assessment models adopting and without adopting conversion model
未应用转换关系 应用转换关系 液化案例判别成功率 0.927 0.936 非液化案例判别成功率 0.642 0.661 总体判别成功率 0.785 0.799 模型误差均值 0.851 0.835 模型误差变异系数 0.469 0.442 BIC 190.0 181.9 -
ASCE. 2016. Minimum design loads and associated criteria for buildings and other structures(ASCE/SEI 7-16)[S].West Conshohocken: ASTM.. ASTM. 2016. Standard test method for energy measurement for dynamic penetrometers(D4633-16)[S]. West Conshohocken: ASTM International. ASTM. 2011a. Standard test method for penetration test(SPT) and split-barrel sampling of soils(D1586-11)[S]. West Conshohocken: ASTM International. ASTM. 2011b. Standard practice for determining the normalized penetration resistance of sands for evaluation of liquefaction potential(ASTM D6066)[S]. West Conshohocken: ASTM International. Boulanger R W, Wilson D W, Idriss I M. 2012. Examination and reevalaution of SPT-Based Liquefaction Triggering Case Histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 138 (8): 898-909. doi: 10.1061/(ASCE)GT.1943-5606.0000668 Brier G W. 1950. Verification of forecasts expressed in terms of probability[J]. Monthly Weather Review, 78 (1): 1-3. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 BSI. 1990. Methods of test for soils for civil engineering purposes(BS 1377-1990)[S]. London: British Standards Institution. Building Seismic Safety Council. 2009. NEHRP recommended seismic provisions for new buildings and other structures (FEMA P-750)[S]. Washington, D.C. : FEMA. Cao Z J, Wang Y, Li D Q. 2016. Site-specific characterization of soil properties using multiple measurements from different test procedures at different locations-a bayesian sequential updating approach[J]. Engineering Geology, 211: 150-161. doi: 10.1016/j.enggeo.2016.06.021 Cetin K O, Seed R B, Kayen R E, et al. 2018a. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard[J]. Soil Dynamics and Earthquake Engineering, 115: 698-709. doi: 10.1016/j.soildyn.2018.09.012 Cetin K O, Seed R B, Kayen R E, et al. 2018b. Examination of differences between three SPT-based seismic soil liquefaction triggering relationships[J]. Soil Dynamics and Earthquake Engineering, 113: 75-86. doi: 10.1016/j.soildyn.2018.03.013 Chen G X, Kong M Y, Li X J, et al. 2015. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 36 (1): 9-27. Chen L W, Wang Y L, Chen Y X. 2020. Stability of DPT hammer efficiency and relationships of blow-counts obtained by different DPT apparatuses[J]. Chinese Journal of Geotechnical Engineering, 42 (6): 1041-1049. Cheng J, Min J L, Zhang Y D, et al. 2016. The comparative analysis of key soil mechanical parameters between national and foreign standards[J]. Geotechnical Investigation & Surveying, 44 (3): 20-27. China Electric Power Planning and Design Association. 2015. A comparative study of Chinese electric power design standards and international and foreign standards[M]. Beijing: China Electric Power Press. Ching J, Phoon K K. 2019. Constructing site-specific multivariate probability distribution model using bayesian machine learning[J]. Journal of Engineering Mechanics, 145(1): 04018126. doi: 10.1061/(ASCE)EM.1943-7889.0001537 ESRI. 2020a. What Is Empirical Bayesian Kriging?[EB/OL]. https://pro.arcgis.com/en/pro-app/help/analysis/geostatistical-analyst/what-is-empirical-bayesian-kriging-.htm.[2020-08-01] ESRI. 2020b. Cross Validation(Geostatistical Analyst)[EB/OL]. https://pro.arcgis.com/en/pro-app/tool-reference/geostatistical-analyst/cross-validation.htm.[2020-08-01] Farrar J A. 1991. Field energy measurements of standard penetration testing[D]. Denver: University of Colorado Denver. Ge Y X, Zhang J, Zheng W T, et al. 2019. SPT-based soil liquefaction potential assessment: model uncertainty calibration and probabilistic liquefaction prediction[J]. Journal of Engineering Geology, 27 (S1): 489-496. Gneiting T, Raftery A E. 2007. Strictly proper scoring rules, prediction, and estimation[J]. Journal of the American Statistical Association, 102(477): 359-378. doi: 10.1198/016214506000001437 Han Z H. 2016. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 37 (11): 3197-3225. Hwang J H, Yang C W. 2001. Verification of critical cyclic strength curve by taiwan Chi-Chi earthquake data[J]. Soil Dynamics and Earthquake Engineering, 21 (3): 237-257. doi: 10.1016/S0267-7261(01)00002-1 Jiang W, Li Z Y, Lu K Y, et al. 2019. Preliminary analysis of liquefaction characteristics induced by the Songyuan earthquake of May 28 in Jilin, China[J]. Earthquake Engineering and Engineering Dynamics, 39 (3): 52-60. Johnston K, Ver Hoef J M, Krivoruchko K, et al. 2001. Using ArcGIS Geostatistical Analyst[M]. Esri Redlands. JRA. 1996. Design code and explanations for roadway bridges, Part V-seismic resistance design, Japan[S]. Japan: JRA. Kirar B, Maheshwari B K, Muley P. 2016. Correlation between shear wave velocity(Vs) and SPT resistance(N)for roorkee region[J]. International Journal of Geosynthetics and Ground Engineering, 2(1): 9. doi: 10.1007/s40891-016-0047-5 Krivoruchko K, Gribov A. 2014. Pragmatic Bayesian Kriging for Non-Stationary and Moderately Non-Gaussian Data[C]. Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, et al. Mathematics of Planet Earth. Berlin, Heidelberg: Springer: 61-64. doi: 10.1007/978-3-642-32408-6_15. Krivoruchko K, Gribov A. 2019. Evaluation of empirical bayesian Kriging[J]. Spatial Statistics, 32: 100368. doi: 10.1016/j.spasta.2019.100368 Li Z Y, Yuan X M, Cao Z Z, et al. 2012. New evaluation formula for sand liquefaction based on survey of Bachu Earthquake in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 34 (3): 483-437. Liao X B, Guo X Y, Du Y. 2013. Correlation analysis of standard penetration test results on British and Chinese standard equipments[J]. Rock and Soil Mechanics, 34 (1): 143-147. Liao X B, Zhu L W, Wen J. 2016. Influence on SPT hammering energy based on different hammer cushion mass[C]//Proceedings of the 2016 National Engineering Survey Academic Conference(Volume 1). Lingwanda M I, Larsson S, Nyaoro D L. 2015. Correlations of SPT, CPT and DPL data for sandy soil in Tanzania[J]. Geotechnical and Geological Engineering, 33 (5): 1221-1233. doi: 10.1007/s10706-015-9897-1 Liu X L, Zhao Z F, Zhou Y M, et al. 2018. Spatial interpolation analysis of coastal foundation soil[J]. Journal of Engineering Geology, 26 (3): 794-801. Matheron G. 1963. Principles of geostatistics[J]. Economic Geology, 58 (8): 1246-1266. doi: 10.2113/gsecongeo.58.8.1246 Pilz J, Spöck G. 2008. Why do we need and how should we implement bayesian kriging methods[J]. Stochastic Environmental Research and Risk Assessment, 22 (5): 621-632. doi: 10.1007/s00477-007-0165-7 Schwarz G, Others. 1978. Estimating the dimension of a model[J]. The Annals of Statistics, 6 (2): 461-464. Seed H B, Idriss I M, Arango I. 1983. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 109 (3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458) The National Standards Compilation Group of People's Republic of China. 2008. Standard for engineering classification of soil(GB/T 50145-2007)[S]. Beijing: China Planning Press. The National Standards Compilation Group of People's Republic of China. 2009. Code for investigation of geotechnical engineering(GB50021-2001)[S]. Beijing: China Architecture & Building Press. The National Standards Compilation Group of People's Republic of China. 2016. Code for seismic design of buildings(GB 50011-2010)[S]. Beijing: China Architecture & Building Press. Wang G, Zhang J M. 2007. Recent advances in seismic liquefaction research[J]. Advances in Mechanics, 37 (4): 575-589. Wang L M. 2020. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 42 (1): 1-19. Wu X D. 2014. Comparison of the specification for SPT between China and foreign standard[J]. Railway Investigation and Surveying, (4): 32-36. Xie J F. 1984. Some comments on the formula for estimating the liquefaction of sand in revised aseismic design code[J]. Earthquake Engineering and Engineering Vibration, 4 (2): 95-126. Yang Y, Chen L, Sun R, et al. 2017. A depth-consistent SPT-based empirical equation for evaluating sand liquefaction[J]. Engineering Geology, 221: 41-49. doi: 10.1016/j.enggeo.2017.02.032 Yang Y, Li S, He F Y, et al. 2019. A study on effects of variogram and sampling interval in Kriging on analysis of submarine stratum[J]. Journal of Engineering Geology, 27 (4): 794-802. Youd T L, Idriss I M. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 127 (4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297) Zhang X C, Pei X J, Zhang M, et al. 2018. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake-A case study in Dangjiacha, Ningxia province[J]. Journal of Engineering Geology, 26 (5): 1219-1226. Zhou Y G, Tan X M, Chen J, et al. 2017. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 39 (7): 1282-1291. 陈国兴, 孔梦云, 李小军, 等. 2015. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 36 (1): 9-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm 陈龙伟, 王云龙, 陈玉祥. 2020. 不同类型DPT试验锤击能量稳定性及锤击数转化关系探讨[J]. 岩土工程学报, 42 (6): 1041-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006009.htm 程瑾, 闵娟玲, 张云冬, 等. 2016. 关键土力学指标在国内外规范间的对比分析[J]. 工程勘察, 44 (3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201603004.htm 葛一荀, 张洁, 郑文棠, 等. 2019. 基于标准贯入试验的土体液化判别准则模型误差分析及土体液化概率预测[J]. 工程地质学报, 27 (S1): 489-496. doi: 10.13544/j.cnki.jeg.2019123 韩忠华. 2016. Kriging模型及代理优化算法研究进展[J]. 航空学报, 37 (11): 3197-3225. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm 姜伟, 李兆焱, 卢坤玉, 等. 2019.5.28吉林松原地震液化特征初步分析[J]. 地震工程与工程振动, 39 (3): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201903006.htm 李兆焱, 袁晓铭, 曹振中, 等. 2012. 基于新疆巴楚地震调查的砂土液化判别新公式[J]. 岩土工程学报, 34 (3): 483-437. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm 廖先斌, 郭晓勇, 杜宇. 2013. 英标和国标标贯设备试验结果相关性分析[J]. 岩土力学, 34 (1): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301021.htm 廖先斌, 祝刘文, 温俊. 2016. 不同锤垫质量对标贯锤击能量的影响[C]//2016年全国工程勘察学术大会论文集(上册). 刘晓磊, 赵志峰, 周玉明, 等. 2018. 滨海地基土层的空间插值分析[J]. 工程地质学报, 26 (3): 794-801. doi: 10.13544/j.cnki.jeg.2017-191 王刚, 张建民. 2007. 地震液化问题研究进展[J]. 力学进展, 37 (4): 575-589. doi: 10.3321/j.issn:1000-0992.2007.04.007 王辉, 刘晓磊, 赵志峰, 等. 2018. 滨海地基土层的空间插值分析[J]. 工程地质学报, 26(3): 794-801. doi: 10.13544/j.cnki.jeg.2017-191 王兰民. 2020. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 42 (1): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001004.htm 吴晓东. 2014. 中外标准对标准贯入试验规定之对比[J]. 铁道勘察, (4): 32-36. doi: 10.3969/j.issn.1672-7479.2014.04.010 谢君斐. 1984. 关于修改抗震规范砂土液化判别式的几点意见[J]. 地震工程与工程振动, 4 (2): 95-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198402007.htm 杨阳, 李飒, 何福耀, 等. 2019. 半变异函数及取样间距对克里金法在海洋地层分析中的影响研究[J]. 工程地质学报, 27 (4): 794-802. doi: 10.13544/j.cnki.jeg.yt2019198 张晓超, 裴向军, 张茂省, 等. 2018. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报, 26 (5): 1219-1226. doi: 10.13544/j.cnki.jeg.2018224 中国电力规划设计协会, 2015. 中国电力设计标准与国际标准和国外标准比较研究[M]. 北京: 中国电力出版社. 中华人民共和国国家标准编写组. 2007. 土的工程分类标准(GB/T 50145-2007)[S]. 北京: 中国计划出版社. 中华人民共和国国家标准编写组. 2009. 岩土工程勘察规范(GB 50021-2001)[S]北京: 中国建筑工业出版社. 中华人民共和国国家标准编写组. 2016. 建筑抗震设计规范(GB50011-2010)[S]. 北京: 中国建筑工业出版社. 周燕国, 谭晓明, 陈捷, 等. 2017. 易液化深厚覆盖层地震动放大效应台阵观测与分析[J]. 岩土工程学报, 39 (7): 1282-1291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707019.htm -