砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究

葛一荀 张洁 祝刘文 程小久 廖先斌 汪华安 孔明 郑文棠 王占华

葛一荀, 张洁, 祝刘文, 等. 2022. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究[J]. 工程地质学报, 30(2): 507-519. doi: 10.13544/j.cnki.jeg.2020-643
引用本文: 葛一荀, 张洁, 祝刘文, 等. 2022. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究[J]. 工程地质学报, 30(2): 507-519. doi: 10.13544/j.cnki.jeg.2020-643
Ge Yixun, Zhang Jie, Zhu Liuwen, et al. 2022. Chinese and ASTM standard penetration tests at sand site:penetration energy analysis and correlation of blow counts[J]. Journal of Engineering Geology, 30(2): 507-519. doi: 10.13544/j.cnki.jeg.2020-643
Citation: Ge Yixun, Zhang Jie, Zhu Liuwen, et al. 2022. Chinese and ASTM standard penetration tests at sand site:penetration energy analysis and correlation of blow counts[J]. Journal of Engineering Geology, 30(2): 507-519. doi: 10.13544/j.cnki.jeg.2020-643

砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究

doi: 10.13544/j.cnki.jeg.2020-643
基金项目: 

国家自然科学基金项目 41672276

国家自然科学基金项目 51538009

科技部重点创新团队计划 2016RA4059

中央高校基本科研业务费专项资金资助项目

详细信息
    作者简介:

    葛一荀(1995-),男,博士生,主要从事砂土液化及地下工程风险研究. E-mail: ceyxunge@tongji.edu.cn

    通讯作者:

    张洁(1980-),男,博士,教授,主要从事岩土及地下工程风险研究. E-mail: cezhangjie@gmail.com

  • 中图分类号: TU43

CHINESE AND ASTM STANDARD PENETRATION TESTS AT SAND SITE: PENETRATION ENERGY ANALYSIS AND CORRELATION OF BLOW COUNTS

Funds: 

the National Natural Science Foundation of China 41672276

the National Natural Science Foundation of China 51538009

Key Innovation Team Plan of Ministry of Science and Technology 2016RA4059

the Fundamental Research Funds for the Central Universities

  • 摘要: 本文进行了美国《标准贯入测试和对开管取样的标准试验方法》(ASTM D1586-11)(美标)和中国《岩土工程勘察规范》(GB 50021-2001)(国标)标准贯入原位测试对比试验,获得了美标、国标标贯对比数据。标贯锤击能量分析表明,美标锤击能量较国标高。利用经验贝叶斯克里金插值法考虑锤击数的空间变异性,将不同空间位置的锤击数据转化到同一位置进行比较,分别建立了考虑与不考虑克里金插值误差的美标与国标标准贯入转换关系模型,发现考虑插值误差后转换模型的模型误差显著降低。对境外液化数据库的分析表明,当采用本文提出的标准贯入转换关系后,境外液化案例与我国《建筑抗震设计规范》(GB 50011-2010)中的液化判别方法符合程度更高。
  • 图  1  实验场地位置图

    Figure  1.  Location of the experiment site

    图  2  地质剖面图及ZJN05,ZJN04钻孔国标、美标对比实验钻孔柱状图

    Figure  2.  Geologic profile of the site and comparison between NG and (N1)60 in ZJN05,ZJN04 boreholes

    图  3  场地实验方案钻孔布置图

    Figure  3.  Layout of in-situ test

    图  4  场地实验所使用的落锤系统

    a. 国标; b. 美标

    Figure  4.  Hammer systems used in the in-situ test

    图  5  国标、美标锤击系统能量系数沿深度变化

    a. 全部测量数据; b. 20~50击范围内数据

    Figure  5.  Hammer systems energy ratios of GB, ASTM along the depth

    图  6  标贯击数沿深度方向的测试结果对比

    a. NG; b. (N1)60

    Figure  6.  Comparison of NG and (N1)60 along the depth

    图  7  对数变换后ZJN05国标钻孔和ZJN04美标钻孔对比图

    Figure  7.  Comparison between lnNG and ln(N1)60 in ZJN05,ZJN04 boreholes

    图  8  克里金插值后相同空间位置数据对比

    a. (N1)60NG; b. ln(N1)60与lnNG

    Figure  8.  Comparisons of (N1)60 and NG,ln(N1)60 and lnNG at the same position

    图  9  不考虑插值误差的转换关系和ln(N1)60与lnNG比较

    Figure  9.  Estimated relationships without considering interpolation error and comparison between ln(N1)60 and lnNG

    图  10  考虑插值误差的转换关系和ln(N1)60与lnNG比较

    Figure  10.  Estimated relationships considering interpolation error and comparison between ln(N1)60 and lnNG

    表  1  现场试验采用的设备参数

    Table  1.   Apparatus used in the experiment

    国标规
    定参数
    国标实
    际参数
    美标规
    定参数
    美标实
    际参数
    落锤形式 穿心锤 安全锤
    落锤质量/kg 63.5 63.6 63.5±1 64.2
    锤垫质量/kg 4.9
    落锤钻杆等
    总质量/kg
    91.2 83.8
    贯入器管靴
    刃口厚度/mm
    1.6 1.6 2.5 2.5
    钻杆 直径Φ 42,相对弯曲<1/1000 直径Φ 42,单位质量6.27 kg·m-1 直径Φ41.2,单位质量4.5~7.5 kg·m-1 直径Φ 42,单位质量6.27kg·m-1
    下载: 导出CSV

    表  2  美标、国标标贯未修正锤击数均值沿深度变化的情况

    Table  2.   Comparison between the mean values of the original blow counts of ASTM and GB at the same depth interval

    深度范围/m 国标击数均值 美标击数均值 美标/国标
    0.5~2.0 3.56 2.94 0.83
    2.0~3.5 3.80 5.91 1.55
    3.5~5.0 3.98 1.75 0.44
    5.0~6.5 7.79 4.97 0.64
    6.5~8.0 7.18 7.21 1.00
    8.0~9.5 24.56 19.91 0.81
    9.5~11.0 15.34 12.86 0.84
    平均 0.87
    下载: 导出CSV

    表  3  相同深度(N1)60NG的均值对比情况

    Table  3.   Comparison between the mean value of (N1)60 and NG at the same depth interval

    深度范围/m NG均值 (N1)60均值 (N1)60/NG
    0.5~2.0 3.56 6.60 1.85
    2.0~3.5 3.80 13.24 3.48
    3.5~5.0 3.98 3.65 0.92
    5.0~6.5 7.79 9.53 1.22
    6.5~8.0 7.18 14.09 1.96
    8.0~9.5 24.56 35.99 1.47
    9.5~11.0 15.34 22.03 1.44
    下载: 导出CSV

    表  4  不同半变异函数、数据变换、趋势项组合的交叉验证结果比较

    Table  4.   Comparison of the cross-validation results under different combinations of semivariance function,data transformation and trend removal

    模型
    编号
    半变异
    函数
    趋势项
    移除
    数据
    变换
    均方根
    误差
    95%置信
    区间占比
    平均
    CRPS
    1 K-Bessel 第一阶 0.429 95 0.234
    2 K-Bessel 第一阶 经验法 0.468 95 0.237
    3 消减函数 第一阶 经验法 0.482 94 0.244
    4 消减函数 第一阶 0.453 95 0.246
    5 指数函数 第一阶 经验法 0.488 94 0.246
    下载: 导出CSV

    表  5  不考虑插值误差的(N1)60NG的转换关系参数

    Table  5.   Estimated parameters for the relationships between (N1)60 and NG without considering the interpolation error

    函数形式 a b σε BIC
    线性函数 0.296 1.000 0.426 47.948
    幂函数 0.393 0.948 0.425 51.236
    下载: 导出CSV

    表  6  考虑插值误差的(N1)60NG转换关系参数

    Table  6.   Estimated parameters for the relationship between the(N1)60 and NG considering the interpolation error

    函数形式 a b σε BIC
    线性函数 0.283 1.000 0.194 46.678
    幂函数 0.434 0.917 0.227 49.422
    下载: 导出CSV

    表  7  采用转换关系与未采用转换关系方法的判别结果比较

    Table  7.   Results of the liquefaction assessment models adopting and without adopting conversion model

    未应用转换关系 应用转换关系
    液化案例判别成功率 0.927 0.936
    非液化案例判别成功率 0.642 0.661
    总体判别成功率 0.785 0.799
    模型误差均值 0.851 0.835
    模型误差变异系数 0.469 0.442
    BIC 190.0 181.9
    下载: 导出CSV
  • ASCE. 2016. Minimum design loads and associated criteria for buildings and other structures(ASCE/SEI 7-16)[S].West Conshohocken: ASTM..
    ASTM. 2016. Standard test method for energy measurement for dynamic penetrometers(D4633-16)[S]. West Conshohocken: ASTM International.
    ASTM. 2011a. Standard test method for penetration test(SPT) and split-barrel sampling of soils(D1586-11)[S]. West Conshohocken: ASTM International.
    ASTM. 2011b. Standard practice for determining the normalized penetration resistance of sands for evaluation of liquefaction potential(ASTM D6066)[S]. West Conshohocken: ASTM International.
    Boulanger R W, Wilson D W, Idriss I M. 2012. Examination and reevalaution of SPT-Based Liquefaction Triggering Case Histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 138 (8): 898-909. doi: 10.1061/(ASCE)GT.1943-5606.0000668
    Brier G W. 1950. Verification of forecasts expressed in terms of probability[J]. Monthly Weather Review, 78 (1): 1-3. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
    BSI. 1990. Methods of test for soils for civil engineering purposes(BS 1377-1990)[S]. London: British Standards Institution.
    Building Seismic Safety Council. 2009. NEHRP recommended seismic provisions for new buildings and other structures (FEMA P-750)[S]. Washington, D.C. : FEMA.
    Cao Z J, Wang Y, Li D Q. 2016. Site-specific characterization of soil properties using multiple measurements from different test procedures at different locations-a bayesian sequential updating approach[J]. Engineering Geology, 211: 150-161. doi: 10.1016/j.enggeo.2016.06.021
    Cetin K O, Seed R B, Kayen R E, et al. 2018a. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard[J]. Soil Dynamics and Earthquake Engineering, 115: 698-709. doi: 10.1016/j.soildyn.2018.09.012
    Cetin K O, Seed R B, Kayen R E, et al. 2018b. Examination of differences between three SPT-based seismic soil liquefaction triggering relationships[J]. Soil Dynamics and Earthquake Engineering, 113: 75-86. doi: 10.1016/j.soildyn.2018.03.013
    Chen G X, Kong M Y, Li X J, et al. 2015. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 36 (1): 9-27.
    Chen L W, Wang Y L, Chen Y X. 2020. Stability of DPT hammer efficiency and relationships of blow-counts obtained by different DPT apparatuses[J]. Chinese Journal of Geotechnical Engineering, 42 (6): 1041-1049.
    Cheng J, Min J L, Zhang Y D, et al. 2016. The comparative analysis of key soil mechanical parameters between national and foreign standards[J]. Geotechnical Investigation & Surveying, 44 (3): 20-27.
    China Electric Power Planning and Design Association. 2015. A comparative study of Chinese electric power design standards and international and foreign standards[M]. Beijing: China Electric Power Press.
    Ching J, Phoon K K. 2019. Constructing site-specific multivariate probability distribution model using bayesian machine learning[J]. Journal of Engineering Mechanics, 145(1): 04018126. doi: 10.1061/(ASCE)EM.1943-7889.0001537
    ESRI. 2020a. What Is Empirical Bayesian Kriging?[EB/OL]. https://pro.arcgis.com/en/pro-app/help/analysis/geostatistical-analyst/what-is-empirical-bayesian-kriging-.htm.[2020-08-01]
    ESRI. 2020b. Cross Validation(Geostatistical Analyst)[EB/OL]. https://pro.arcgis.com/en/pro-app/tool-reference/geostatistical-analyst/cross-validation.htm.[2020-08-01]
    Farrar J A. 1991. Field energy measurements of standard penetration testing[D]. Denver: University of Colorado Denver.
    Ge Y X, Zhang J, Zheng W T, et al. 2019. SPT-based soil liquefaction potential assessment: model uncertainty calibration and probabilistic liquefaction prediction[J]. Journal of Engineering Geology, 27 (S1): 489-496.
    Gneiting T, Raftery A E. 2007. Strictly proper scoring rules, prediction, and estimation[J]. Journal of the American Statistical Association, 102(477): 359-378. doi: 10.1198/016214506000001437
    Han Z H. 2016. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 37 (11): 3197-3225.
    Hwang J H, Yang C W. 2001. Verification of critical cyclic strength curve by taiwan Chi-Chi earthquake data[J]. Soil Dynamics and Earthquake Engineering, 21 (3): 237-257. doi: 10.1016/S0267-7261(01)00002-1
    Jiang W, Li Z Y, Lu K Y, et al. 2019. Preliminary analysis of liquefaction characteristics induced by the Songyuan earthquake of May 28 in Jilin, China[J]. Earthquake Engineering and Engineering Dynamics, 39 (3): 52-60.
    Johnston K, Ver Hoef J M, Krivoruchko K, et al. 2001. Using ArcGIS Geostatistical Analyst[M]. Esri Redlands.
    JRA. 1996. Design code and explanations for roadway bridges, Part V-seismic resistance design, Japan[S]. Japan: JRA.
    Kirar B, Maheshwari B K, Muley P. 2016. Correlation between shear wave velocity(Vs) and SPT resistance(N)for roorkee region[J]. International Journal of Geosynthetics and Ground Engineering, 2(1): 9. doi: 10.1007/s40891-016-0047-5
    Krivoruchko K, Gribov A. 2014. Pragmatic Bayesian Kriging for Non-Stationary and Moderately Non-Gaussian Data[C]. Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, et al. Mathematics of Planet Earth. Berlin, Heidelberg: Springer: 61-64. doi: 10.1007/978-3-642-32408-6_15.
    Krivoruchko K, Gribov A. 2019. Evaluation of empirical bayesian Kriging[J]. Spatial Statistics, 32: 100368. doi: 10.1016/j.spasta.2019.100368
    Li Z Y, Yuan X M, Cao Z Z, et al. 2012. New evaluation formula for sand liquefaction based on survey of Bachu Earthquake in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 34 (3): 483-437.
    Liao X B, Guo X Y, Du Y. 2013. Correlation analysis of standard penetration test results on British and Chinese standard equipments[J]. Rock and Soil Mechanics, 34 (1): 143-147.
    Liao X B, Zhu L W, Wen J. 2016. Influence on SPT hammering energy based on different hammer cushion mass[C]//Proceedings of the 2016 National Engineering Survey Academic Conference(Volume 1).
    Lingwanda M I, Larsson S, Nyaoro D L. 2015. Correlations of SPT, CPT and DPL data for sandy soil in Tanzania[J]. Geotechnical and Geological Engineering, 33 (5): 1221-1233. doi: 10.1007/s10706-015-9897-1
    Liu X L, Zhao Z F, Zhou Y M, et al. 2018. Spatial interpolation analysis of coastal foundation soil[J]. Journal of Engineering Geology, 26 (3): 794-801.
    Matheron G. 1963. Principles of geostatistics[J]. Economic Geology, 58 (8): 1246-1266. doi: 10.2113/gsecongeo.58.8.1246
    Pilz J, Spöck G. 2008. Why do we need and how should we implement bayesian kriging methods[J]. Stochastic Environmental Research and Risk Assessment, 22 (5): 621-632. doi: 10.1007/s00477-007-0165-7
    Schwarz G, Others. 1978. Estimating the dimension of a model[J]. The Annals of Statistics, 6 (2): 461-464.
    Seed H B, Idriss I M, Arango I. 1983. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 109 (3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    The National Standards Compilation Group of People's Republic of China. 2008. Standard for engineering classification of soil(GB/T 50145-2007)[S]. Beijing: China Planning Press.
    The National Standards Compilation Group of People's Republic of China. 2009. Code for investigation of geotechnical engineering(GB50021-2001)[S]. Beijing: China Architecture & Building Press.
    The National Standards Compilation Group of People's Republic of China. 2016. Code for seismic design of buildings(GB 50011-2010)[S]. Beijing: China Architecture & Building Press.
    Wang G, Zhang J M. 2007. Recent advances in seismic liquefaction research[J]. Advances in Mechanics, 37 (4): 575-589.
    Wang L M. 2020. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 42 (1): 1-19.
    Wu X D. 2014. Comparison of the specification for SPT between China and foreign standard[J]. Railway Investigation and Surveying, (4): 32-36.
    Xie J F. 1984. Some comments on the formula for estimating the liquefaction of sand in revised aseismic design code[J]. Earthquake Engineering and Engineering Vibration, 4 (2): 95-126.
    Yang Y, Chen L, Sun R, et al. 2017. A depth-consistent SPT-based empirical equation for evaluating sand liquefaction[J]. Engineering Geology, 221: 41-49. doi: 10.1016/j.enggeo.2017.02.032
    Yang Y, Li S, He F Y, et al. 2019. A study on effects of variogram and sampling interval in Kriging on analysis of submarine stratum[J]. Journal of Engineering Geology, 27 (4): 794-802.
    Youd T L, Idriss I M. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 127 (4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    Zhang X C, Pei X J, Zhang M, et al. 2018. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake-A case study in Dangjiacha, Ningxia province[J]. Journal of Engineering Geology, 26 (5): 1219-1226.
    Zhou Y G, Tan X M, Chen J, et al. 2017. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 39 (7): 1282-1291.
    陈国兴, 孔梦云, 李小军, 等. 2015. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 36 (1): 9-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm
    陈龙伟, 王云龙, 陈玉祥. 2020. 不同类型DPT试验锤击能量稳定性及锤击数转化关系探讨[J]. 岩土工程学报, 42 (6): 1041-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006009.htm
    程瑾, 闵娟玲, 张云冬, 等. 2016. 关键土力学指标在国内外规范间的对比分析[J]. 工程勘察, 44 (3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201603004.htm
    葛一荀, 张洁, 郑文棠, 等. 2019. 基于标准贯入试验的土体液化判别准则模型误差分析及土体液化概率预测[J]. 工程地质学报, 27 (S1): 489-496. doi: 10.13544/j.cnki.jeg.2019123
    韩忠华. 2016. Kriging模型及代理优化算法研究进展[J]. 航空学报, 37 (11): 3197-3225. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm
    姜伟, 李兆焱, 卢坤玉, 等. 2019.5.28吉林松原地震液化特征初步分析[J]. 地震工程与工程振动, 39 (3): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201903006.htm
    李兆焱, 袁晓铭, 曹振中, 等. 2012. 基于新疆巴楚地震调查的砂土液化判别新公式[J]. 岩土工程学报, 34 (3): 483-437. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm
    廖先斌, 郭晓勇, 杜宇. 2013. 英标和国标标贯设备试验结果相关性分析[J]. 岩土力学, 34 (1): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301021.htm
    廖先斌, 祝刘文, 温俊. 2016. 不同锤垫质量对标贯锤击能量的影响[C]//2016年全国工程勘察学术大会论文集(上册).
    刘晓磊, 赵志峰, 周玉明, 等. 2018. 滨海地基土层的空间插值分析[J]. 工程地质学报, 26 (3): 794-801. doi: 10.13544/j.cnki.jeg.2017-191
    王刚, 张建民. 2007. 地震液化问题研究进展[J]. 力学进展, 37 (4): 575-589. doi: 10.3321/j.issn:1000-0992.2007.04.007
    王辉, 刘晓磊, 赵志峰, 等. 2018. 滨海地基土层的空间插值分析[J]. 工程地质学报, 26(3): 794-801. doi: 10.13544/j.cnki.jeg.2017-191
    王兰民. 2020. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 42 (1): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001004.htm
    吴晓东. 2014. 中外标准对标准贯入试验规定之对比[J]. 铁道勘察, (4): 32-36. doi: 10.3969/j.issn.1672-7479.2014.04.010
    谢君斐. 1984. 关于修改抗震规范砂土液化判别式的几点意见[J]. 地震工程与工程振动, 4 (2): 95-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198402007.htm
    杨阳, 李飒, 何福耀, 等. 2019. 半变异函数及取样间距对克里金法在海洋地层分析中的影响研究[J]. 工程地质学报, 27 (4): 794-802. doi: 10.13544/j.cnki.jeg.yt2019198
    张晓超, 裴向军, 张茂省, 等. 2018. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报, 26 (5): 1219-1226. doi: 10.13544/j.cnki.jeg.2018224
    中国电力规划设计协会, 2015. 中国电力设计标准与国际标准和国外标准比较研究[M]. 北京: 中国电力出版社.
    中华人民共和国国家标准编写组. 2007. 土的工程分类标准(GB/T 50145-2007)[S]. 北京: 中国计划出版社.
    中华人民共和国国家标准编写组. 2009. 岩土工程勘察规范(GB 50021-2001)[S]北京: 中国建筑工业出版社.
    中华人民共和国国家标准编写组. 2016. 建筑抗震设计规范(GB50011-2010)[S]. 北京: 中国建筑工业出版社.
    周燕国, 谭晓明, 陈捷, 等. 2017. 易液化深厚覆盖层地震动放大效应台阵观测与分析[J]. 岩土工程学报, 39 (7): 1282-1291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707019.htm
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  22
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 修回日期:  2021-02-04
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回