浅切割的高山峡谷复杂地形的地震动放大效应研究

李郑梁 李建春 刘波 聂萌萌

李郑梁,李建春,刘波,等. 2021.浅切割的高山峡谷复杂地形的地震动放大效应研究[J].工程地质学报,29(1):137-150. doi:10.13544/j.cnki.jeg.2021-0002 doi: 10.13544/j.cnki.jeg.2021-0002
引用本文: 李郑梁,李建春,刘波,等. 2021.浅切割的高山峡谷复杂地形的地震动放大效应研究[J].工程地质学报,29(1):137-150. doi:10.13544/j.cnki.jeg.2021-0002 doi: 10.13544/j.cnki.jeg.2021-0002
Li Zhengliang, Li Jianchun, Liu Bo, et al. 2021. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology, 29(1): 137-150. doi: 10.13544/j.cnki.jeg.2021-0002
Citation: Li Zhengliang, Li Jianchun, Liu Bo, et al. 2021. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology, 29(1): 137-150. doi: 10.13544/j.cnki.jeg.2021-0002

浅切割的高山峡谷复杂地形的地震动放大效应研究

doi: 10.13544/j.cnki.jeg.2021-0002
基金项目: 

国家自然科学基金 41525009

国家自然科学基金 41831281

详细信息
    作者简介:

    李郑梁(1992-),男,博士生,主要从事岩石动力学方面的科研工作. E-mail:lzllyy92@163.com

    通讯作者:

    李建春(1971-),女,博士,教授,博士生导师,主要从事岩石动力学方面的科研与教学工作. E-mail:jcli@seu.edu.cn

  • 中图分类号: P511.2

SEISMIC MOTION AMPLIFICATION EFFECT OF SHALLOW-CUTTING HILL-CANYON COMPOSITE TOPOGRAPHY

Funds: 

the National Natural Science Foundation of China 41525009

the National Natural Science Foundation of China 41831281

  • 摘要: 高山峡谷复杂地形是我国西部地区常见的地形和场地条件,大量的工程(桥梁、大坝等)修建在这类场地上。实际震害调查结果表明不规则地形对地震动具有明显的放大作用,对边坡的稳定性和建筑物的安全性构成不利的影响。因此研究高山峡谷复杂地形的地震动放大效应具有重要的工程价值。本文针对浅切割的高山峡谷复杂地形(山体顶和峡谷底的高差在100~500 m范围内),基于边界积分方程法获得场地任意点的地震动,详细探讨了入射波类型(P波和SV波)、入射波频率、入射角、山体和峡谷的几何参数对浅切割的高山峡谷复杂地形的地震动放大效应的影响,发现山体的存在明显改变场地地震动的空间分布;高山峡谷复杂地形对地表地震动的放大作用与入射波频率密切相关;不同的地震波类型对应不同的地震动空间分布模式;峡谷深度对地震动放大效应的影响取决于入射波的类型;不对称的几何形状导致地震动的空间分布也呈现明显的不对称,并且SV波入射时的不对称性强于P波;当地震波斜入射时,峡谷背向震源侧的地震动远大于面向震源侧的地震动。本文的研究方法可以获得考虑高山峡谷复杂地形地震动放大效应的场地任意位置的地震动,为边坡的稳定性分析提供更符合实际的地震输入。
  • 图  1  高山峡谷复杂地形的计算模型

    Figure  1.  2D model for a hill-canyon composite topography subjected to plane P and SV waves

    图  2  边界积分方程法的计算流程图

    Figure  2.  A flow chart of the boundary integral equation method

    图  3  简谐SV波斜入射下单一峡谷表面及附近地表面的位移幅值放大系数

    Figure  3.  Amplification factors of surface displacement amplitudes on the canyon and environs for a single canyon under obliquely incident harmonic SV waves

    图  4  简谐P波垂直入射下孤立山体表面及附近地表面位移幅值放大系数

    Figure  4.  Amplification factors of surface displacement amplitudes on the hill and environs for an isolated hill under vertically incident harmonic P waves

    图  5  简谐SV波(f=2 Hz)垂直入射下高山峡谷复杂地形内正则化位移幅值的空间分布(基于不同方法)

    a.边界积分方程法;b.有限元法

    Figure  5.  The spatial distribution of normalized displacement ampli-tudes for a hill-canyon composite topography under vertically inci-dent harmonic SV waves(f=2 Hz) calculated by different methods

    图  6  简谐SV波(f=2 Hz)垂直入射下两侧山体对正则化位移幅值空间分布的影响

    a.单个峡谷;b.高山峡谷复杂地形

    Figure  6.  The effect of the existence of hills on the spatial distri-bution of normalized displacement amplitudes under vertically incident harmonic SV waves(f=2 Hz)

    图  7  不同频率简谐波入射下观察点处的正则化位移幅值

    a.观察点位置; b.简谐P波垂直入射; c.简谐SV波垂直入射

    Figure  7.  The normalized displacement amplitudes on monitor points versus frequencies of incident P and SV waves

    图  8  简谐P波和SV波垂直入射下观察点处的主频值和最大的正则化位移幅值

    a.简谐P波垂直入射; b.简谐SV波垂直入射

    Figure  8.  The main frequencies and the maximum normalized displacement amplitudes on monitor points under vertically incident harmonic P and SV waves

    图  9  简谐波(f=2 Hz)垂直入射下峡谷深度d对正则化位移幅值空间分布的影响

    a. P波,d=50 m; b. P波,d=150 m; c. SV波,d=50 m; d. SV波,d=150 m

    Figure  9.  The effect of the depth of the canyon on the spatial distribution of the normalized displacement amplitudes under vertically incident harmonic P and SV waves(f=2 Hz)

    图  10  简谐波(f=2 Hz)垂直入射下两侧山体高度不一致对正则化位移幅值空间分布的影响

    a. P波,h2=50 m;b. P波,h2=150 m;c. SV波,h2=50 m; d. SV波,h2=150 m

    Figure  10.  The effect of the inconsistent height between hills on the spatial distribution of the normalized displacement amplitudes under vertically incident harmonic P and SV waves(f=2 Hz)

    图  11  简谐波(f=2 Hz)垂直入射下两侧山体宽度不一致对正则化位移幅值空间分布的影响

    a. P波,a2=400 m; b. SV波,a2=400 m

    Figure  11.  The effect of the inconsistent width between hills on the spatial distribution of the normalized displacement amplitudes under vertically incident harmonic P and SV waves(f=2 Hz)

    图  12  简谐波(f=2 Hz)斜入射时正则化位移幅值的空间分布情况

    a. P波,入射角30°; b. SV波,入射角30°

    Figure  12.  The spatial distribution of the normalized displacement amplitudes under obliquely incident harmonic P and SV waves(f=2 Hz)

  • Ba Z N, Wu M T, Liang J W. 2019. Influence of geometric parameters and elastic modulus on seismic dynamic response of rock slopes by IBEM[J]. Chinese Journal of Rock Mechanics and Engineering, 38(8): 1578-1592.
    Cao X R, Song T S, Liu D K. 2001. Scattering of plane SH-wave by a cylindrical hill of arbitrary shape[J]. Applied Mathematics and Mechanics, 22(9): 976-982.
    Che W, Luo Q F. 2008. Seismic wave propagation in complex topography[J]. Chinese Journal of Geotechnical Engineering, 30(9): 1333-1337.
    Cui F P, Hu R L, Yin Y P, et al. 2009. Numerical simulation of slope collapsing and sliding due to single or combined actions of seismic p-and s-waves with time difference[J]. Journal of Engineering Geology, 17(4): 455-462.
    Cui S H, Pei X J, Huang R Q, et al. 2019. Geological features and causes of the Wenchuan earthquake triggered large landslides on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 27(2): 437-450.
    Deng T, Lu Q W, Wu S J, et al. 2019. Seismic stability analysis for anchor-frame reinforced slope using general slice principle[J]. Journal of Engineering Geology, 27(3): 601-607.
    Gao Y F. 2019. Analytical models and amplification effects of seismic wave propagation in canyon sites[J]. Chinese Journal of Geotechnical Engineering, 41(1): 1-25.
    Gao F, Li X J, Chi M J. 2020. Analysis of stability of single and double side soil slopes with FEM strength reduction method[J]. Journal of Engineering Geology, 28(3): 650-657.
    Geli L, Bard P Y, Jullien B. 1988. The effect of topography on earthquake ground motion: a review and new results[J]. Bulletin of the Seismological Society of America, 78(1): 42-63.
    He J X, Wang Y S, Luo Y H, et al. 2015. Monitoring result analysis of slope seismic response during the Kangding Ms 6.3 earthquake[J]. Journal of Engineering Geology, 23(3): 383-393.
    Huang R Q, Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592.
    Kamalian M, Jafari M K, Sohrabi-Bidar A, et al. 2008. Seismic response of 2-D semi-sine shaped hills to vertically propagating incident waves: amplification patterns and engineering applications[J]. Earthquake Spectra, 24(2): 405-430.
    Liang J W, Zhang Y S, Lee V W. 2005. Scattering of plane P waves by a semi-cylindrical hill: analytical solution[J]. Earthquake Engineering and Engineering Vibration, 4(1): 27-36.
    Lin M L, Wang K L. 2006. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology, 86: 118-133.
    Lin S Z, Qiu F Q, Liu D K. 2010. Scattering of SH waves by a scalene triangular hill[J]. Earthquake Engineering and Engineering Vibration, 9: 23-38.
    Liu H X, Xu Q, Zou W, et al. 2012. Shaking table test for vertical dynamic response behavior of layered rock slopes[J]. Journal of Vibration and Shock, 31(22): 13-28.
    Liu H X, Xu Q, Li Y R, et al. 2013. Response of high-strength rock slope to seismic waves in a shaking table test[J]. Bulletin of the Seismological Society of America, 103(6): 3012-3025.
    Li H B, Liu Y Q, Liu L B, et al. 2019. Numerical evaluation of topographic effects on seismic response of single-faced rock slopes[J]. Bulletin of Engineering Geology and the Environment, 78: 1873-1891.
    Liang J W, Liu Z X, Huang L, et al. 2019. The indirect boundary integral equation method for the broadband scattering of plane P, SV and Rayleigh waves by a hill topography[J]. Engineering Analysis with Boundary Elements, 98: 184-202.
    Luo Y H. 2011. Study on complex slopes response law under earthquake action[D]. Chengdu: Chengdu University of Technology.
    Poursartip B, Fathi A, Kallivokas L F. 2017. Seismic wave amplification by topographic features: A parametric study[J]. Soil Dynamics and Earthquake Engineering, 92: 503-527.
    Qi S W, Wu F Q, Sun J Z. 2003. Study on dynamic responses of slope[J]. Science in China(Series E), 33(S1): 28-40.
    Qi S W. 2007. Evaluation of the permanent displacement of rock mass slope considering deterioration of slide surface during earthquake[J]. Chinese Journal of Geotechnical Engineering, 29(3): 452-457.
    Sanchez-Sesma F J, Campillo M. 1991. Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formulation[J]. Bulletin of the Seismological Society of America, 81(6): 2234-2253.
    Shen T, Wang Y S, Luo Y H, et al. 2018. Monitoring result and analysis of slope seismic response during the Jiuzhaigou MS7.0 earthquake[J]. Journal of Engineering Geology, 26(6): 1611-1621.
    Tsaur D H, Chang K H. 2009. Scattering and focusing of SH waves by a convex circular-arc topography[J]. Geophysical Journal International, 177: 222-234.
    Wang H Y, Xie L L. 2010. Effects of topography on ground motion in the Xishan park, Zigong city[J]. Chinese Journal of Geophysics, 53(7): 1631-1638.
    Wang F W. 2019. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes[J]. Journal of Engineering Geology, 27(1): 98-107.
    Wu Z J, Zhang D, Wang S N, et al. 2020. Dynamic-response characteristics and deformation evolution of loess slopes under seismic loads[J]. Engineering Geology, 267: 105507.
    Xu G X, Yao L K, Gao Z N, et al. 2008. Large-scale shaking table model test study on dynamic characteristics and dynamic responses of slope[J]. Chinese Journal of Rock Mechanics and Engineering, 27(3): 624-632.
    Xu Q, Chen J J, Feng W K, et al. 2009. Study of the seismic response of slopes by physical modeling[J]. Journal of Sichuan University(Engineering Science Edition), 41(3): 266-272.
    Xu Q, Li W L. 2010. Study on the Direction effects of Landslides Triggered by Wenchuan Earthquake[J]. Journal of Sichuan University(Engineering Science Edition), 42(S1): 7-14.
    Yang G X, Wu F Q, Dong J Y, et al. 2012a. Study of dynamic response characters and failure mechanism of rock slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(4): 696-702.
    Yang G X, Ye H L, Wu F Q, et al. 2012b. Shaking table model test on dynamic response characteristics and failure mechanism of antidip layered rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2214-2221.
    Yang C W, Zhang J J. 2013. Analysis of landslide responses of a typical high hill-river valley field near national road G213 during Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 32(7): 1467-1475.
    Ye H L, Huang R Q, Zheng Y R, et al. 2009. The study of safety evaluation on slope seismic stability[J]. Chinese Journal of Underground Space and Engineering, 5(6): 1248-1252.
    Yin Y P. 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444.
    Yin Y P, Wang W P. 2014. Researches on seismic landslide stability analysis[J]. Journal of Engineering Geology, 22(4): 586-600.
    Yin Y P, Wang W P, Li B, et al. 2016. Study of stratigraphic site effect on the failure mechanism of Donghekou rockslide triggered by Wenchuan earthquake[J]. China Civil Engineering Journal, 49(S2): 126-131.
    Yuan X M, Men F L. 1992. Scattering of plane SH waves by a semi-cylindrical hill[J]. Earthquake Engineering and Structural Dynamics, 21: 109-1098.
    Zhang Z L, Wang T, Wu S R, et al. 2017a. Seismic performance of loess-mudstone slope in Tianshui-Centrifuge model tests and numerical analysis[J]. Engineering Geology, 222: 225-235.
    Zhang C, Liu Q J, Deng P. 2017b. Surface motion of a half-space with a semicylindrical canyon under P, SV, and Rayleigh waves[J]. Bulletin of the Seismological Society of America, 107(2): 809-820.
    Zhang Z Z, Fleurisson J A, Pellet F L. 2018. A case study of site effects on seismic ground motions at Xishan Park ridge in Zigong, Sichuan, China[J]. Engineering Geology, 243: 308-319.
    Zhan Z F, Qi S W, He N W, et al. 2019. Shaking table test study of homogeneous rock slope model under strong earthquake[J]. Journal of Engineering Geology, 27(5): 946-954.
    Zheng Y R, Ye H L, Huang R Q. 2009. Analysis and discussion of failure mechanism and fracture surface of slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28(8): 1714-1723.
    Zhou X T, Han J L, Shi F G et al. 2014. Numerical simulation for amplification effect of topography and geomorphology to seismic waves[J]. Journal of Engineering Geology, 22(6): 1211-1220.
    巴振宁, 吴孟桃, 梁建文. 2019.坡体几何参数与弹性模量对岩质斜坡地震动力响应的影响: IBEM求解[J].岩石力学与工程学报, 38(8): 1578-1592.
    曹欣荣, 宋天舒, 刘殿魁. 2001.任意形状凸起地形对平面SH波的散射[J].应用数学和力学, 22(9): 976-982.
    车伟, 罗奇峰. 2008.复杂地形条件下地震波的传播研究[J].岩土工程学报, 30(9): 1333-1337.
    崔芳鹏, 胡瑞林, 殷跃平, 等. 2009.地震纵横波时差耦合作用的斜坡崩滑效应研究[J].工程地质学报, 17(4): 455-462. http://www.gcdz.org/article/id/8439
    崔圣华, 裴向军, 黄润秋, 等. 2019.汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J].工程地质学报, 27(2): 437-450. doi: 10.13544/j.cnki.jeg.2017-179
    邓涛, 卢钦武, 吴尚杰, 等. 2019.基于通用条分原理的锚框支护边坡地震动力稳定分析[J].工程地质学报, 27(3): 601-607. doi: 10.13544/j.cnki.jeg.2018-108
    高玉峰. 2019.河谷场地地震波传播解析模型及放大效应[J].岩土工程学报, 41(1): 1-25.
    高冯, 李小军, 迟明杰. 2020.基于有限元强度折减法的单双面边坡稳定性分析[J].工程地质学报, 28(3): 650-657. doi: 10.13544/j.cnki.jeg.2018-080
    贺建先, 王运生, 罗永红, 等. 2015.康定MS6.3级地震斜坡地震动响应监测分析[J].工程地质学报, 23(3): 383-393. doi: 10.13544/j.cnki.jeg.2015.03.003
    黄润秋, 李乐. 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 27(12): 2585-2592.
    刘汉香, 许强, 邹威, 等. 2012.层状岩质斜坡竖向动力响应特性的振动台试验研究[J].振动与冲击, 31(22): 13-28.
    罗永红. 2011.地震作用下复杂斜坡响应规律研究[D].成都: 成都理工大学.
    祁生文, 伍法权, 孙进忠. 2003.边坡动力响应规律研究[J].中国科学(E辑), 33(增1): 28-40.
    祁生文. 2007.考虑结构面退化的岩质边坡地震永久位移研究[J].岩土工程学报, 29(3): 452-457.
    申通, 王运生, 罗永红, 等. 2018.九寨沟MS7.0级地震斜坡地震动响应监测研究[J].工程地质学报, 26(6): 1611-1621. doi: 10.13544/j.cnki.jeg.2017-446
    王海云, 谢礼立. 2010.自贡市西山公园地形对地震动的影响[J].地球物理学报, 53(7): 1631-1638.
    汪发武. 2019.地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J].工程地质学报, 27(1): 98-107. doi: 10.13544/j.cnki.jeg.2019-034
    徐光兴, 姚令侃, 高召宁, 等. 2008.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报, 27(3): 624-632.
    许强, 陈建君, 冯文凯, 等. 2009.斜坡地震响应的物理模型试验研究[J].四川大学学报(工程科学版), 41(3): 266-272.
    许强, 李为乐. 2010.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版), 42(S1): 7-14.
    杨国香, 伍法权, 董金玉, 等. 2012a.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报, 31(4): 696-702.
    杨国香, 叶海林, 伍法权, 等. 2012b.反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究[J].岩石力学与工程学报, 31(11): 2214-2221.
    杨长卫, 张建经. 2013.汶川地震中国道G213左侧某典型高山河谷场地地震滑坡响应分析[J].岩石力学与工程学报, 32(7): 1467-1475.
    叶海林, 黄润秋, 郑颖人, 等. 2009.地震作用下边坡稳定性安全评价的研究[J].地下空间与工程学报, 5(6): 1248-1252.
    殷跃平. 2008.汶川8级地震地质灾害研究[J].工程地质学报, 16(4): 433-444. http://www.gcdz.org/article/id/8633
    殷跃平, 王文沛. 2014.论滑坡地震力[J].工程地质学报, 22(4): 586-600. doi: 10.13544/j.cnki.jeg.2014.04.005
    殷跃平, 王文沛, 李滨, 等. 2016.地层场地效应对东河口地震滑坡发生影响研究[J].土木工程学报, 49(S2): 126-131.
    詹志发, 祁生文, 何乃武, 等. 2019.强震作用下均质岩质边坡动力响应的振动台模型试验研究[J].工程地质学报, 27(5): 946-954. doi: 10.13544/j.cnki.jeg.2019168
    郑颖人, 叶海林, 黄润秋. 2009.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报, 28(8): 1714-1723.
    周兴涛, 韩金良, 施凤根, 等. 2014.地形地貌对地震波放大效应数值模拟研究[J].工程地质学报, 22(6): 1211-1220. doi: 10.13544/j.cnki.jeg.2014.06.027
  • 加载中
图(12)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  125
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 修回日期:  2021-02-01
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回