考虑形貌特征和级配影响的钙质砂压缩破碎力学特性研究

田朝阳 兰恒星 刘鑫

田朝阳, 兰恒星, 刘鑫. 2021. 考虑形貌特征和级配影响的钙质砂压缩破碎力学特性研究[J].工程地质学报, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006
引用本文: 田朝阳, 兰恒星, 刘鑫. 2021. 考虑形貌特征和级配影响的钙质砂压缩破碎力学特性研究[J].工程地质学报, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006
Tian Chaoyang, Lan Hengxing, Liu Xin. 2021. Study on compression and crushing mechanical properties of calcareous sand considering influence of morphology and grading[J].Journal of Engineering Geology, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006
Citation: Tian Chaoyang, Lan Hengxing, Liu Xin. 2021. Study on compression and crushing mechanical properties of calcareous sand considering influence of morphology and grading[J].Journal of Engineering Geology, 29(6): 1700-1710. doi: 10.13544/j.cnki.jeg.2021-0006

考虑形貌特征和级配影响的钙质砂压缩破碎力学特性研究

doi: 10.13544/j.cnki.jeg.2021-0006
基金项目: 

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC019

国家自然科学基金项目 41525010

国家自然科学基金项目 41927806

国家自然科学基金项目 41790443

详细信息
    作者简介:

    田朝阳(1996-),男,硕士生,主要从事砂土力学特性方面的研究. E-mail:1210547836@qq.com

    通讯作者:

    兰恒星(1972-),男,博士,教授,博士生导师,主要从事工程地质与地质灾害方面研究. E-mail:lanhx@igsnrr.ac.cn

  • 中图分类号: TU411

STUDY ON COMPRESSION AND CRUSHING MECHANICAL PROPERTIES OF CALCAREOUS SAND CONSIDERING INFLUENCE OF MORPHOLOGY AND GRADING

Funds: 

Key Pioneering Project of Chinese Academy of Sciences QYZDY-SSW-DQC019

the National Natural Science Foundation of China 41525010

the National Natural Science Foundation of China 41927806

the National Natural Science Foundation of China 41790443

  • 摘要: 针对岛礁大型构筑物修建过程中由于高应力而导致作为地基材料的钙质砂发生破碎,进而引发地基沉降变形问题。本文采用高压固结仪对钙质砂开展了一系列终止压力为16 MPa的侧限压缩试验,研究了高应力水平下钙质砂的压缩破碎特性。同时基于显微图像采集和处理技术对钙质砂颗粒的形状参数(圆度和完整度)进行了定量化表征,研究了钙质砂的形状分布规律。最终分别探讨了级配特征(如平均粒径、不均匀系数)、形貌特征等因素对钙质砂压缩和破碎特性的影响。结果表明:随着平均粒径的增大,钙质砂颗粒的形状不规则程度逐渐增加,其棱角也越发育。随着竖向应力的增大,在e-logp平面内,不同粒径钙质砂的压缩曲线逐渐会聚并相交于一条直线,初始粒径对其压缩特性的影响逐渐减小以致消失。而不同级配钙质砂的压缩曲线也发生会聚,但未相交于一条直线。当试样的不均匀系数(Cu)相近时,其压缩破碎量随着平均粒径(d50)的增大而逐渐增加,当试样的d50相近时,其压缩破碎量随着Cu增大而逐渐减小。上述研究成果将对南海岛礁大型工程建设提供重要科学依据。
  • 图  1  试验砂样微观照片

    a. 钙质砂;b. 福建砂

    Figure  1.  Micro-scale image of test materials

    图  2  各砂样颗粒级配曲线

    Figure  2.  Particle size distribution of samples

    图  3  试样基本几何参数获取

    a. 颗粒轮廓提取与处理;b. 颗粒基本参数定义

    Figure  3.  Software processing of basic particle size parameter

    图  4  试验仪器

    Figure  4.  Test apparatus

    图  5  不同粒组钙质砂形状参数分布

    a. 圆度分布;b. 完整度分布

    Figure  5.  Distribution of calcareous sand shape parameters with different grain sizes

    图  6  试样压缩-回弹曲线

    Figure  6.  Compression-rebound curves of samples

    图  7  相对破碎率模型示意图

    Figure  7.  Schematic graph of relative breakage ratio model

    图  8  不同粒径钙质砂压缩曲线

    Figure  8.  The compression curves of calcareous sand with different sizes

    图  9  相对破碎率Br与中值粒径d50关系图

    Figure  9.  Relationship between Br and d50

    图  10  不同级配钙质砂压缩曲线

    Figure  10.  The compression curves of calcareous sand with different particle size distributions

    图  11  相对破碎率Br与不均匀系数Cu关系图

    Figure  11.  Relationship between Br and Cu

    表  1  试样基本物理参数

    Table  1.   Basic physical parameters of samples

    试样 Gs 粒径/mm d50/mm d60/mm d30/mm d10/mm 不均匀系数Cu 曲率系数Cc
    钙质砂 2.76 0~2 0.412 0.495 0.285 0.160 3.10 1.03
    福建砂 2.65 0.063~1.180 0.409 0.432 0.344 0.272 2.27 0.99
    下载: 导出CSV

    表  2  不同d50Cu钙质砂试验方案

    Table  2.   Test programs of compression with different d50 and Cu

    粒组名称 Gs 粒径/mm d50/mm d60/mm d30/mm d10/mm Cu Cc
    单粒组 2.76 0.063~0.150 0.106 0.115 0.089 0.072 1.61 0.96
    0.150~0.212 0.181 0.187 0.169 0.156 1.20 0.97
    0.212~0.300 0.256 0.265 0.238 0.221 1.20 0.97
    0.300~0.425 0.362 0.375 0.338 0.313 1.20 0.97
    0.425~0.600 0.513 0.530 0.478 0.443 1.20 0.97
    0.600~1.180 0.890 0.948 0.774 0.658 1.44 0.96
    1.180~2.000 1.590 1.672 1.426 1.262 1.36 0.96
    混合粒组 2.76 0.300~0.60 0.425 0.460 0.375 0.325 1.42 0.87
    0.212~1.18 0.425 0.528 0.329 0.243 2.17 0.84
    0.150~1.18 0.425 0.522 0.295 0.191 2.73 0.94
    下载: 导出CSV

    表  3  不同单粒组钙质砂颗粒形状参数

    Table  3.   Shape parameters for calcareous sand with different particle sizes

    粒径/mm S Sd C Cd
    0.063~0.150 0.881 0.043 0.974 0.013
    0.150~0.212 0.872 0.046 0.971 0.013
    0.212~0.300 0.863 0.052 0.969 0.015
    0.300~0.425 0.854 0.048 0.961 0.018
    0.425~0.600 0.823 0.064 0.948 0.029
    0.600~1.180 0.842 0.064 0.957 0.018
    1.180~2.000 0.847 0.059 0.953 0.019
    下载: 导出CSV

    表  4  试样压缩破碎结果

    Table  4.   The result of samples compression and crushing

    试样 e0 av Br
    钙质砂 1.051 0.032 0.135
    福建砂 0.748 0.007 0.028
    下载: 导出CSV
  • Altuhafi F N,Coop M R,Georgiannou V N. 2016. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 142(12): 04016071. doi: 10.1061/(ASCE)GT.1943-5606.0001569
    Altuhafi F N, Coop M R. 2011. Changes to particle characteristics associated with the compression of sands[J]. Géotechnique, 61 (6): 459-471. doi: 10.1680/geot.9.P.114
    Alvarez-Borges F, Clayton C R I, Richards D, et al. 2018. The effect of the remolded void ratio on unit shaft friction in small displacement piles in chalk[C]//Engineering in Chalk: Proceedings of the Chalk 2018 Conference: 475-480.
    Cai Z Y, Hou H Y, Zhang J X, et al. 2019. Experimental study on the influence of density and stress level on particle breakage of coral sand[J]. Journal of Hydraulic Engineering, 50 (2): 184-192.
    Carrera A, Coop M, Lancellotta R. 2011. Influence of grading on the mechanical behaviour of Stava tailings[J]. Géotechnique, 61 (11): 935-946. doi: 10.1680/geot.9.P.009
    Cavarretta I, O'Sullivan C, Coop M R. 2017. The relevance of roundness to the crushing strength of granular materials[J]. Géotechnique, 67 (4): 301-312. doi: 10.1680/jgeot.15.P.226
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26 (6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806011.htm
    Cho G C, Dodds J, Santamarina C. 2006. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 133 (5): 291-602. http://materias.fi.uba.ar/6408/santamarina2.pdf
    Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111 (10): 177-1192. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg17/ref17&dbid=16&doi=10.1139%2Ft2012-007&key=10.1061%2F(ASCE)0733-9410(1985)111%3A10(1177)
    Ji W D, Zhang Y T, Pei W B, et al. 2018. Influence of loading method and stress level on the particle crushing of coral calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (8): 1953-1961. http://www.researchgate.net/publication/328800645_Influence_of_loading_method_and_stress_level_on_the_particle_crushing_of_coral_calcareous_sand
    Jiang M J, Wu D, Cao P, et al. 2017. Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 39 (S1): 1-5. http://www.researchgate.net/publication/328075750_Connected_inner_pore_analysis_of_calcareous_sands_using_SEM
    Kuang D M, Long Z L, Guo R Q, et al. 2020. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles[J]. Marine Georesources & Geotechnology, 39 (2): 1-11. doi: 10.1080/1064119X.2020.1725194
    Lan H X, Martin C D, Hu B. 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research—Solid Earth, 115, B01202.
    Lan H X, Zhao X X, Wu Y M, et al. 2017. Settlement and deformation characteristics of calcareous island-reef[J]. Periodical of Ocean University of China, 47 (10): 1-8.
    Lei X D, Yang Z P, Zhai H, et al. 2020. Particle flow numerical research on factors influencing rock block breakage characteristics of soil-rock mixtures[J]. Journal of Engineering Geology, 28 (6): 1193-1204.
    Li W, Coop M R. 2019. Mechanical behaviour of Panzhihua iron tailings[J]. Canadian Geotechnical Journal, 56 (3): 420-435. doi: 10.1139/cgj-2018-0032
    Li Y B, Li S, Liu X L, et al. 2020. Effect of particle breakage on compression properties of calcareous sands with oedometer tests[J]. Journal of Engineering Geology, 28 (2): 352-359. doi: 10.1007/s12205-020-0458-7
    Liu C Q, Wang R. 1998. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 19 (1): 32-37, 44. http://www.cnki.com.cn/Article/CJFDTotal-YTLX199801005.htm
    Liu X, Tian C Y, Lan H X. 2020. Laboratory investigation of the mechanical properties of a rubber-calcareous sand mixture: The effect of rubber content[J]. Applied Sciences-Basel, 10(18): 6583. doi: 10.3390/app10186583
    Liu X, Yang J, Wang G H, et al. 2016. Small-strain shear modulus of volcanic granular soil: An experimental investigation[J]. Soil Dynamics and Earthquake Engineering, 86 : 15-24. doi: 10.1016/j.soildyn.2016.04.005
    Liu X, Yang J. 2018. Shear wave velocity in sand: effect of grain shape[J]. Géotechnique, 68 (8): 742-748. doi: 10.1680/jgeot.17.T.011
    Lü C W, Wu H L, Shi M L. 2019. Laboratory tests of cement stabilized & solidified coral reef and sand for use of highway pavement[J]. Journal of Engineering Geology, 27 (6): 1440-1447.
    Lü Y R, Wang M Y, Wei J Q, et al. 2018. Experimental techniques of SHPB for calcareous sand and its dynamic behaviors[J]. Explosion and Shock Waves, 38 (6): 1262-1270. http://www.researchgate.net/publication/329831559_Experimental_techniques_of_SHPB_for_calcareous_sand_and_its_dynamic_behaviors
    Ma L J, Li Z, Wang M Y, et al. 2019. Effects of size and loading rate on the mechanical properties of single coral particles[J]. Powder Technology, 342 : 961-971. doi: 10.1016/j.powtec.2018.10.037
    Ma Q F, Liu H L, Xiao Y, et al. 2018. Compression and particle breakage features of calcareous sand under high stress[J]. Journal of Disaster Prevention and Mitigation Engineering, 38 (6): 1020-1025. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201806018.htm
    McDowell G R, Bolton M D. 1998. On the micro mechanics of crushable aggregates[J]. Géotechnique, 48 (5): 667-679. doi: 10.1680/geot.1998.48.5.667
    Morioka B, Nicholson P. 2000. Evaluation of the liquefaction potential of calcareous sand[C]//Proceedings of the International Offshore and Polar Engineering Conference: 494-500.
    Nakata Y, Hyde A F L, Hyodo M, et al. 1999. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 49 (5): 567-583. doi: 10.1680/geot.1999.49.5.567
    Peng Y, Ding X M, Xiao Y, et al. 2019. Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method[J]. Rock and Soil Mechanics, 40 (7): 2663-2672. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201907020.htm
    Qin Y, Yao T, Wang R, et al. 2014. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 35 (11): 3123-3128. http://d.wanfangdata.com.cn/periodical/ytlx201411012
    Sharma S S, Fahey M. 2020. Deformation characteristics of two cemented calcareous soils[J]. Canadian Geotechnical Journal, 41 (6): 1139-1151. http://www.onacademic.com/detail/journal_1000037117233410_e4ba.html
    Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S1): 26-32. http://www.gcdz.org/EN/abstract/abstract10112.shtml
    Shen Y, Shen X, Yu Y M, et al. 2019. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents[J]. Rock and Soil Mechanics, 40 (10): 3733-3740. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201910006.htm
    Shipton B, Coop M R. 2012. On the compression behaviour of reconstituted soils[J]. Soils Found, 52 (4): 668-681. doi: 10.1016/j.sandf.2012.07.008
    Sun J Z, Wang R. 2004. Influence of confining pressure on particle breakage and shear expansion of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (4): 641-644. http://www.researchgate.net/publication/296724578_Influence_of_confining_pressure_on_particle_breakage_and_shear_expansion_of_calcareous_sand
    Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs-Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27 (1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Wang S, Lei X W, Meng Q S, et al. 2020. Influence of particle shape on the density and compressive performance of calcareous sand[J]. KSCE Journal of Civil Engineering, 24 (1): 49-62. doi: 10.1007/s12205-020-0145-8
    Wang W, Coop M R. 2016. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera[J]. Géotechnique, 66 (12): 984-998. doi: 10.1680/jgeot.15.P.247
    Wang Y Q, Hong Y, Guo Z, et al. 2018. Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J]. Rock and Soil Mechanics, 39 (1): 199-206, 215. http://www.researchgate.net/publication/325169482_Micro-and_macro-mechanical_behavior_of_crushable_calcareous_sand_in_South_China_Sea
    Wei H Z, Zhao T, Meng Q S, et al. 2020. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
    Wen Z, Duan Z G, Li S D, et al. 2020. Shear mechanical properties of dredged coral sands from South China Sea, China[J]. Journal of Engineering Geology, 28 (1): 77-84.
    Wood A, Mackenzie D, Burbury M, et al. 2015. Design of large diameter monopiles in chalk at westermost rough offshore wind farm[C]//Frontiers in Offshore Geotechnics Ⅲ: Proceedings of the Third International Symposium on Frontiers in Offshore Geotechnics(ISFOG 2015): 723-728.
    Wu J P, Chu Y, Lou Z G. 1997. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 19 (5): 49-55. http://trid.trb.org/view/476982
    Wu Y, Yoshimoto M, Hyodo M, et al. 2014. Evaluation of crushing stress at critical state of granulated coal ash in triaxial test[J]. Géotechnique Letters, 4 (5): 337-342. http://www.researchgate.net/profile/Yang_Wu37/publication/271588791_Evaluation_of_crushing_stress_at_critical_state_of_granulated_coal_ash_in_triaxial_test/links/55d065bf08aee19936fd9e5b/Evaluation-of-crushing-stress-at-critical-state-of-granulated-coal-ash-in-triaxial-test.pdf
    Yang J, Liu X. 2016. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 66 (6): 500-514. doi: 10.1680/jgeot.15.P.205
    Zeng K F, Liu H B. 2020. A modified Duncan-Chang E-B model with particle breakage for calcareous sand[J]. Journal of Engineering Geology, 28 (1): 94-102.
    Zhang B S, Gu K, Li J W, et al. 2020. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 28 (4): 725-733.
    Zhang B W. 2014. Particle breakage research of calcareous sand under confined compression[D]. Wuhan: Wuhan University of Technology.
    Zhang B, Chai S X, Wei H Z, et al. 2020. Influence of coral sand particle shape on the compression properties of carol grained calcareous soil[J]. Journal of Engineering Geology, 28 (1): 85-93.
    Zhang J M, Duan M D, Wang D L, et al. 2019. Particle strength of calcareous sand in nansha islands, south China sea[J]. Advances in Civil Engineering Materials, 8 (1): 355-364. http://www.researchgate.net/publication/333633500_Particle_Strength_of_Calcareous_Sand_in_Nansha_Islands_South_China_Sea
    Zhang J M, Wang R, Shi X F, et al. 2005. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (18): 3327-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200518021.htm
    Zhang J M. 2004. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan: Institute of Rock & Soil Mechanics, Chinese Academy of Sciences.
    Zhou B, Wang J, Wang H. 2018. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 68 (1): 18-30. doi: 10.1680/jgeot.16.P.207
    蔡正银, 侯贺营, 张晋勋, 等. 2019. 密度与应力水平对珊瑚砂颗粒破碎影响试验研究[J]. 水利学报, 50 (2): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
    陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变及强度影响研究[J]. 工程地质学报, 26 (6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    纪文栋, 张宇亭, 裴文斌, 等. 2018. 加载方式和应力水平对珊瑚砂颗粒破碎影响的试验研究[J]. 岩石力学与工程学报, 37 (8): 1953-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808018.htm
    蒋明镜, 吴迪, 曹培, 等. 2017. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 39 (S1): 1-5. doi: 10.11779/CJGE2017S1001
    兰恒星, 赵晓霞, 伍宇明, 等. 2017. 钙质岛礁沉降变形过程分析[J]. 中国海洋大学学报, 47 (10): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710002.htm
    雷晓丹, 杨忠平, 翟航, 等. 2020. 土石混合体块石破碎影响因素的颗粒流数值研究[J]. 工程地质学报, 28 (6): 1193-1204. doi: 10.13544/j.cnki.jeg.2020-059
    李彦斌, 李飒, 刘小龙, 等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 28 (2): 352-359. doi: 10.13544/j.cnki.jeg.2019-283
    刘崇权, 汪稔. 1998. 钙质砂物理力学性质初探[J]. 岩土力学, 19 (1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
    吕晨炜, 伍浩良, 石名磊. 2019. 水泥固化稳定珊瑚礁岩、砂吹填材料路用性能研究[J]. 工程地质学报, 27 (6): 1440-1447. doi: 10.13544/j.cnki.jeg.2019-096
    吕亚茹, 王明洋, 魏久淇, 等. 2018. 钙质砂的SHPB实验技术及其动态力学性能[J]. 爆炸与冲击, 38 (6): 1262-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201806009.htm
    马启峰, 刘汉龙, 肖杨, 等. 2018. 高应力作用下钙质砂压缩及颗粒破碎特性试验研究[J]. 防灾减灾工程学报, 38 (6): 1020-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806018.htm
    彭宇, 丁选明, 肖杨, 等. 2019. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究[J]. 岩土力学, 40 (7): 2663-2672. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm
    秦月, 姚婷, 汪稔, 等. 2014. 基于颗粒破碎的钙质沉积物高压固结变形分析[J]. 岩土力学, 35 (11): 3123-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411014.htm
    沈建华, 汪稔. 2010. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 18 (S1): 26-32. http://www.gcdz.org/article/id/10112
    沈杨, 沈雪, 俞演名, 等. 2019. 粒组含量对钙质砂压缩变形特性影响的宏细观研究[J]. 岩土力学, 40 (10): 3733-3740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910006.htm
    孙吉主, 汪稔. 2004. 钙质砂的颗粒破碎和剪胀特性的围压效应[J]. 岩石力学与工程学报, 23 (4): 641-644. doi: 10.3321/j.issn:1000-6915.2004.04.021
    汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 27 (1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    汪轶群, 洪义, 国振, 等. 2018. 南海钙质砂宏细观破碎力学特性[J]. 岩土力学, 39 (1): 199-206, 215. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801025.htm
    文哲, 段志刚, 李守定, 等. 2020. 中国南海岛礁吹填珊瑚砂剪切力学特性[J]. 工程地质学报, 28 (1): 77-84. doi: 10.13544/j.cnki.jeg.2019-243
    吴京平, 褚瑶, 楼志刚, 等. 1997. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 19 (5): 49-55. doi: 10.3321/j.issn:1000-4548.1997.05.008
    曾凯峰, 刘华北. 2020. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型[J]. 工程地质学报, 28 (1): 94-102. doi: 10.13544/j.cnki.jeg.2019-218
    张弼文. 2014. 侧限条件下钙质砂的颗粒破碎特性研究[D]. 武汉: 武汉理工大学.
    张斌, 柴寿喜, 魏厚振, 等. 2020. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 28 (1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
    张丙树, 顾凯, 李金文, 等. 2020. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 28 (4): 725-733. doi: 10.13544/j.cnki.jeg.2019-312
    张家铭, 汪稔, 石祥峰, 等. 2005. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 24 (18): 3327-3331. doi: 10.3321/j.issn:1000-6915.2005.18.022
    张家铭. 2004. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院武汉岩土力学研究所.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  28
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-09
  • 修回日期:  2021-03-31
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回