震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例

黎尤 何坤 胡卸文 刘波 周瑞宸 文强

黎尤, 何坤, 胡卸文, 等. 2022. 震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例[J]. 工程地质学报, 30(2): 542-552. doi: 10.13544/j.cnki.jeg.2021-0014
引用本文: 黎尤, 何坤, 胡卸文, 等. 2022. 震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例[J]. 工程地质学报, 30(2): 542-552. doi: 10.13544/j.cnki.jeg.2021-0014
Li You, He Kun, Hu Xiewen, et al. 2022. Formation characteristics and kinematics 3-D simulation of rockfall evolved from shattered mountain—Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 30(2): 542-552. doi: 10.13544/j.cnki.jeg.2021-0014
Citation: Li You, He Kun, Hu Xiewen, et al. 2022. Formation characteristics and kinematics 3-D simulation of rockfall evolved from shattered mountain—Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 30(2): 542-552. doi: 10.13544/j.cnki.jeg.2021-0014

震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例

doi: 10.13544/j.cnki.jeg.2021-0014
基金项目: 

国家重点研发计划 2018YFC1505401

国家自然科学基金 41731285

国家自然科学基金 41672283

国家自然科学基金 41907225

详细信息
    作者简介:

    黎尤(1997-),男,硕士生,主要从事地质灾害研究工作. E-mail: 1179918130@qq.com

    通讯作者:

    胡卸文(1963-),男,博士,教授,博士生导师,主要从事工程地质、环境地质方面的教学研究工作. E-mail: huxiewen@163.com

  • 中图分类号: P642.21

FORMATION CHARACTERISTICS AND KINEMATICS 3-D SIMULATION OF ROCKFALL EVOLVED FROM SHATTERED MOUNTAIN—CASE STUDY OF SANGUANMIAO VILLAGE ROCKFALL IN WENCHUAN COUNTY

Funds: 

the National Key Research and Development Program of China 2018YFC1505401

the National Natural Science Foundation of China 41731285

the National Natural Science Foundation of China 41672283

the National Natural Science Foundation of China 41907225

  • 摘要: 三官庙村震裂山体位于汶川强震区,又于2018年7月20日和2019年8月22日发生了两次震后崩塌灾害,严重威胁坡脚居民生命财产安全。通过对震裂山体危岩现场地质调查、无人机航测和室内三维数值模拟,阐述了震裂山体-崩塌发生的成因机理和动力学过程,并对潜在危岩区的危险性进行了分析评价。研究结果认为,此类崩塌形成过程可划分为3个阶段:即潜在危岩体坡体早期构造及卸荷裂隙发育、震裂山体(危岩体)形成、崩塌失稳。崩塌源区岩体在岷江下切过程中形成卸荷裂隙,受“5·12”强震及其余震作用下形成震动拉裂缝,单薄山脊发生变形形成震裂山体,在雨季强降雨触发下发生崩塌。运用三维模拟软件RocPro3D模拟已发生崩塌块石堆积位置、优势运动路径,并与既有崩塌堆积区进行对比验证,综合得出岩土体表面特征参数。根据所得参数进一步模拟预测了危岩区可能发生崩塌的运动特征,对其优势运动路径、运动速度、运动能量和弹跳高度进行分析,得出崩塌危害影响范围和程度。论文的研究成果对强震区震裂山体灾害隐患点的减灾防灾工作具有重要的指导意义。
  • 图  1  危岩分区及岩体结构赤平投影图

    Figure  1.  Dangerous rock zoning and stereographic projection of rock mass structure

    图  2  2018.07.20崩塌源区

    Figure  2.  Rockfall source area,2018.07.20

    图  3  2019.08.22崩塌源区

    Figure  3.  Rockfall source area,2019.08.22

    图  4  强震区危岩崩塌变形破坏各阶段示意

    a. 潜在危岩体坡体早期构造及卸荷裂隙形成阶段; b震裂山体(危岩体)形成阶段; c崩塌失稳阶段

    Figure  4.  Schematic diagram of each stage of deformation and failure of dangerous rocks in strong earthquake area

    图  5  ⅠW1危岩带剖面图

    Figure  5.  Section of dangerous rock area ⅠW1

    图  6  ⅡW2危岩带剖面图

    Figure  6.  Section of dangerous rock area ⅡW2

    图  7  崩塌落石沿途地层岩性区域划分

    Figure  7.  Division of stratigraphic lithologic area along rockfall

    图  8  危岩崩塌与沿途崩落堆积部位三维空间分布

    Figure  8.  Three-dimensional spatial distribution of rockfall and accumulation area along the way

    图  9  基于数值模拟的各危岩区崩塌落石堆积空间分布位置示意图

    Figure  9.  Schematic diagram of spatial distribution of rockfall accumulation in each dangerous rock area based on numerical simulation

    图  10  危岩区崩塌落石运动速度、冲击能量与弹跳高度数值模拟空间分布示意图

    a. 运动速度;b. 冲击能量;c. 弹跳高度分布

    Figure  10.  Schematic diagram of spatial distribution of numerical simulation of movement velocity,impact energy and jumping height of rockfall in dangerous rock area

    图  11  优势路径下各区落石运动速度、冲击能量、弹跳高度与运动位置关系曲线

    a. Ⅰ号危岩区;b. Ⅱ号危岩区;c. Ⅲ号危岩区;d. Ⅳ号危岩区

    Figure  11.  Relationship curve between movement velocity,impact energy,jumping height and movement position of rockfall in different dangerous rock areas under dominant path

    表  1  不同危岩区内各危岩带岩体结构面特征

    Table  1.   Characteristics of rock mass structural plane in different dangerous rock zones

    位置 结构面组数 结构面产状
    Ⅰ号危岩区 ⅠW1危岩带 4 300°∠46°、331°∠82°、266°∠16°、209°∠68°
    ⅠW2危岩带 3 315°∠82°、156°∠60°、283°∠25°
    Ⅱ号危岩区 ⅡW1危岩带 5 328°∠36°、190°∠58°、137°∠86°、108°∠57°、230°∠46°
    ⅡW2危岩带 3 288°∠72°、210°∠70°、5°∠54°
    ⅡW3~5危岩带 5 274°∠60°、135°∠85°、70°∠57°、8°∠59°、350°∠42°
    ⅡW6危岩带 3 232°∠16°、239°∠48°、52°∠40°
    Ⅲ号危岩区 ⅢW1、3危岩带 4 304°∠78°、130°∠54°、298°∠22°、129°∠73°
    ⅢW4危岩带 3 233°∠60°、295°∠30°、129°∠73°
    ⅢW2、5危岩带 5 6°∠72°、288°∠72°、98°∠83°、295°∠30°、230°∠60°
    Ⅳ号危岩区 ⅣW1危岩带 4 290°∠70°、50°∠62°、112°∠88°、250°∠72°
    ⅣW2危岩带 3 260°∠84°、30°∠60°、15°∠13°
    ⅣW3危岩带 3 270°∠78°、86°∠74°、15°∠13°
    下载: 导出CSV

    表  2  各危岩区危岩体特征参数

    Table  2.   Characteristic parameters of dangerous rock mass in each dangerous rock area

    危岩分区 块石密度/kg·m-3 形状 直径/m
    Ⅰ号危岩区 2600 球体 1.5
    Ⅱ号危岩区
    Ⅲ号危岩区
    Ⅳ号危岩区
    下载: 导出CSV

    表  3  崩塌落石沿途岩土体表面特征参数

    Table  3.   Surface characteristic parameters of rock and soil along rockfall

    参数 花岗闪长岩 崩坡积物 残坡积物
    恢复系数
    标准值Rn 0.75 0.65 0.45
    正切值Rt 0.85 0.70 0.50
    变化范围Δ_R/% 4 5 8
    极限速度V_R(lim)/m·s-1 10 10 10
    极限变化范围Δ_R(lim)/% 2 3 6
    横向偏差
    变化范围Δ_θh/(°) 20.0 17.5 15.0
    极限速度V_θh(lim)/m·s-1 10 10 10
    极限变化范围V_θh(lim)/(°) 10.0 8.5 7.5
    竖向偏差
    变化范围Δ_θv/(°) 2 2 2
    极限速度V_θv(lim)/m·s-1 10 10 10
    极限变化范围V_θv(lim)/(°) 4 4 4
    摩擦系数
    k 0.40 0.75 0.80
    变化范围Δ_k/% 12 15 15
    极限速度V_k(lim)/m·s-1 10 10 10
    极限变化范围Δ_k(lim)/% 10 10 10
    转换参数
    角度β_lim/(°)(锐角情况下) 2 3 4
    角度β_lim/(°)(钝角情况下) 25 30 35
    下载: 导出CSV
  • Bourrier F,Lambert S,Baroth J. 2015. A reliability-based approach for the design of rockfall protection fences[J]. Rock Mechanics and Rock Engineering,48 (1): 247-259. doi: 10.1007/s00603-013-0540-2
    Cheng L X, Su S R, Li S, et al. 2012. Analysis of formation mechanisms on highway slope collapse after Wenchuan earthquake[J]. Journal of Engineering Geology, 20 (2): 249-258.
    Cheng Y G, Fan A J, Li B, et al. 2018. Mechanism and prevention of collapse dangerous rock in Wen(chuan) Ma(Er Kang) section of Sichuan Tibet expressway[J]. Journal of Water Resources and Architectural Engineering, 16 (6): 18-24.
    Feng W K, Huang R Q, Xu Q, et al. 2009a. Study on formation mechanism and deformation failure models of shatter slopes[J]. Hydrogeology & Engineering Geology, 36 (6): 42-48.
    Feng W K, Xu Q, Huang R Q. 2009b. Preliminary study on mechanical mechanism of slope earthquake-induced deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (S1): 3124-3130.
    Feng W K, Hu Y P, Xie J Z, et al. 2016. Disaster mechanism and stability analysis of shattered bedding slopes triggered by rainfall─A case study of Sanxicun landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (11): 2197-2207.
    Fan X M, Scaringi G, Korup O, et al. 2019. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 57 (2): 421-503. doi: 10.1029/2018RG000626
    Hu X W, Luo G, Huang R Q, et al. 2009. Study of stability of remnant mountain body in back scarp of Tangjiashan landslide after"5 ·12"Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (11): 2349-2359.
    Huang R Q. 2011. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 19 (2): 145-151.
    Huang R Q, Pei X J, Luo J. 2016. Collapse Mechanism and Stability Evaluation of Shattered Slope under Wind Loading[J]. Journal of Southwest Jiaotong University, 51 (5): 958-970.
    Hu X W, Mei X F, Yang Y, et al. 2019. Dynamic response of pile-plate rock retaining wall under impact of rockfall[J]. Journal of Engineering Geology, 27 (1): 123-133.
    He K, Hu X W, Ma G T, et al. 2020. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 41 (10): 3443-3455.
    He K, Li Y J, Ma G T, et al. 2020. Failure mode analysis of post-seismic rockfall in shattered mountains exemplified by detailed investigation and numerical modelling[J]. Landslides, 18 : 425-446.
    Liang Q G, Han W F. 2009. Characteristics of rock mass failure under seismic loads at strong earthquake areas[J]. Northwestern Seismological Journal, 31 (1): 15-20.
    Liu H J, Lan H X. 2012. Rockfall disaster simulation and risk assessment on the Dujiangyan-Wenchuan highway after"5 ·12"Earthquake[J]. Resources Science, 34 (2): 345-352.
    Liu H Y, Wang X L, Li L H, et al. 2017. Application of UAV aerial photogrammetry for rockfall disaster survey[J]. Journal of Engineering Geology, 25 (S1): 82-87.
    Liu Y, Pei X J, Luo J, et al. 2018. Analysis on the stability of seismic-slope in Wangjiapo under earthquake and strong raining[J]. The Chinese Journal of Geological Hazard and Control, 29 (1): 23-33.
    Liu B, Hu X W, He K, et al. 2020. The starting mechanism and movement process of the co-seismic rockslide: A case study of the Laoyingyan rockslide induced by the"5 ·12"Wenchuan earthquake[J]. Journal of Mountain Science, 17 (5): 1188-1205. doi: 10.1007/s11629-019-5775-2
    Radtke A, Toe D, Berger F, et al. 2014. Managing coppice forests for rockfall protection: lessons from modeling[J]. Annals of Forest Science, 71 (4): 485-494. doi: 10.1007/s13595-013-0339-z
    RocPro3D(2014)RocPro3D software[CP]. http://www.rocpro3d.com/rocpro3d_en.php
    Su S R, Li S, Cheng Q. 2012. Characteristics of the post-earthquake rockfalls of highway slopes in Wenchuan-earthquake-stricken areas[J]. Journal of Mountain Research, 30 (3): 321-327.
    Sun Q H, Ma F S, Liu G, et al. 2021. Deformation failure mode and stability analysis of Kanuna unstable rock mass in Lhasa-Yangbajing section of G109 national highway[J]. Journal of Engineering Geology, 29 (2): 495-507.
    Wu Y, He S M, Li X P, et al. 2010. Failure mechanism and diagnosis method of dangerous crack rock after earthquake[J]. Journal of Sichuan University(Engineering Science Edition), 42 (5): 185-190.
    Wang S, Zhang L Q, Zhou J, et al. 2020. Characteristic analysis and kinematic simulation of rockfall along Shexing village section of Qinghai-Tibet Railway[J]. Journal of Engineering Geology, 28 (4): 784-792.
    Yuan J K, Pei X J. 2015. Study on deformation characteristics and dynamic mechanism of shattered mountain fractures in Wenchuan earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 35 (6): 848-855.
    Zhao W H, Huang R Q, Zhao J J, et al. 2011. Rockfall mechanism of cataclastic rock mass and influence of back wall upon the stability of accumulation under strong earthquake[J]. Journal of Engineering Geology, 19 (2): 205-212.
    Zhang J Q, Fan J R, Hu K H. 2012. Comparison of landslide distribution and susceptibility before and after the Wenchuan earthquake[J]. Bulletin of Soil and Water Conservation, 32 (3): 208-210, 276.
    Zhong Y L, Xiang X Q. 2019. Rockfall simulation based on Rockyfor3D[J]. Water Conservancy Science and Technology and Economy, 25 (5): 15-18.
    成良霞, 苏生瑞, 李松, 等. 2012. 震后公路边坡崩塌地质灾害形成机理分析[J]. 工程地质学报, 20 (2): 249-258. doi: 10.3969/j.issn.1004-9665.2012.02.014
    冯文凯, 黄润秋, 许强, 等. 2009a. 震裂斜坡形成机理及变形破坏模式研究[J]. 水文地质工程地质, 36 (6): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200906009.htm
    冯文凯, 许强, 黄润秋. 2009b. 斜坡震裂变形力学机制初探[J]. 岩石力学与工程学报, 28 (S1): 3124-3130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1081.htm
    冯文凯, 胡云鹏, 谢吉尊, 等. 2016. 顺层震裂斜坡降雨触发灾变机制及稳定性分析——以三溪村滑坡为例[J]. 岩石力学与工程学报, 35 (11): 2197-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611004.htm
    胡卸文, 罗刚, 黄润秋, 等. 2009. 唐家山滑坡后壁残留山体震后稳定性研究[J]. 岩石力学与工程学报, 28 (11): 2349-2359. doi: 10.3321/j.issn:1000-6915.2009.11.026
    胡卸文, 梅雪峰, 杨瀛, 等. 2019. 落石冲击荷载作用下的桩板拦石墙结构动力响应[J]. 工程地质学报, 27 (1): 123-133. doi: 10.13544/j.cnki.jeg.2019-004
    黄润秋. 2011. 汶川地震地质灾害后效应分析[J]. 工程地质学报, 19 (2): 145-151. doi: 10.3969/j.issn.1004-9665.2011.02.001
    黄润秋, 裴向军, 罗璟. 2016. 风载作用下震裂山体崩塌机制及稳定性评价方法[J]. 西南交通大学学报, 51 (5): 958-970. doi: 10.3969/j.issn.0258-2724.2016.05.020
    何坤, 胡卸文, 马国涛, 等. 2020. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学, 41 (10): 3443-3455. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm
    梁庆国, 韩文峰. 2009. 强震区岩体地震动力破坏特征[J]. 西北地震学报, 31 (1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200901002.htm
    刘洪江, 兰恒星. 2012. "5 ·12" 震后都江堰-汶川公路崩塌灾害模拟及危险性评价[J]. 资源科学, 34 (2): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201202021.htm
    刘海洋, 王学良, 李丽慧, 等. 2017. 无人机航空摄影测量技术在崩塌灾害调查中的应用[J]. 工程地质学报, 25 (S1): 82-87. doi: 10.13544/j.cnki.jeg.2017.s1.089
    刘洋, 裴向军, 罗璟, 等. 2018. 地震与强降雨条件下云南鲁甸王家坡震裂山体稳定性分析[J]. 中国地质灾害与防治学报, 29 (1): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201801005.htm
    苏生瑞, 李松, 程强. 2012. 汶川地震后公路边坡崩塌灾害发育规律[J]. 山地学报, 30 (3): 321-327. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201203010.htm
    孙琪皓, 马凤山, 刘港, 等. 2021. G109国道拉萨-羊八井段喀努纳危岩体变形破坏模式及稳定性分析[J]. 工程地质学报, 29 (2): 495-507. doi: 10.13544/j.cnki.jeg.2019-093
    吴永, 何思明, 李新坡, 等. 2010. 震后裂缝危岩体的失稳机理与诊断方法[J]. 四川大学学报(工程科学版), 42 (5): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005028.htm
    王颂, 张路青, 周剑, 等. 2020. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报, 28 (4): 784-792. doi: 10.13544/j.cnki.jeg.2019-519
    袁进科, 裴向军. 2015. 汶川地震震裂山体裂缝变形特征与动力机制研究[J]. 防灾减灾工程学报, 35 (6): 848-855. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201506022.htm
    赵伟华, 黄润秋, 赵建军, 等. 2011. 强震条件下碎裂岩体崩塌机理及崩塌后壁对堆积体稳定性影响研究[J]. 工程地质学报, 19 (2): 205-212. doi: 10.3969/j.issn.1004-9665.2011.02.010
    张建强, 范建容, 胡凯衡. 2012. 汶川地震前后崩塌和滑坡分布特征与敏感性对比分析[J]. 水土保持通报, 32 (3): 208-210, 276. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201203044.htm
    钟焰梨, 向喜琼. 2019. 基于Rockyfor3D的滚石模拟[J]. 水利科技与经济, 25 (5): 15-18. doi: 10.3969/j.issn.1006-7175.2019.05.003
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  206
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-04-06
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回