颗粒物质力学及其在工程地质领域中的应用初探

郑虎 牛文清 毛无卫 李丽慧 汪发武 黄雨

郑虎, 牛文清, 毛无卫, 等. 2021.颗粒物质力学及其在工程地质领域中的应用初探[J].工程地质学报, 29(1): 12-24. doi: 10.13544/j.cnki.jeg.2021-0017
引用本文: 郑虎, 牛文清, 毛无卫, 等. 2021.颗粒物质力学及其在工程地质领域中的应用初探[J].工程地质学报, 29(1): 12-24. doi: 10.13544/j.cnki.jeg.2021-0017
Zheng Hu, Niu Wenqing, Mao Wuwei, et al. 2021. Mechanics of gramular material and the application in engineering geology[J]. Journal of Engineering Geology, 29(1): 12-24. doi: 10.13544/j.cnki.jeg.2021-0017
Citation: Zheng Hu, Niu Wenqing, Mao Wuwei, et al. 2021. Mechanics of gramular material and the application in engineering geology[J]. Journal of Engineering Geology, 29(1): 12-24. doi: 10.13544/j.cnki.jeg.2021-0017

颗粒物质力学及其在工程地质领域中的应用初探

doi: 10.13544/j.cnki.jeg.2021-0017
基金项目: 

国家自然科学基金 41672256

国家自然科学基金 42002273

详细信息
    作者简介:

    郑虎(1986-),男,博士,教授,博士生导师,主要从事工程地质、颗粒物质力学方面科研与教学工作. E-mail: zhenghu@tongji.edu.cn

  • 中图分类号: P642

MECHANICS OF GRANULAR MATERIAL AND THE APPLICATION IN ENGINEERING GEOLOGY

Funds: 

the National Natural Science Foundation of China 41672256

the National Natural Science Foundation of China 42002273

  • 摘要: 由碎散物质组成的地质体失稳流滑大变形所致的地质灾害严重影响国民经济发展和人民生命财产安全,绝大多数造成此类地质灾害的对象属于颗粒物质,而地质灾害与颗粒物质力学的交叉融合一直以来都是软物质物理学和工程地质科研工作者的努力方向之一。颗粒物质是由大量离散颗粒组成的复杂无序体系,其力学特性极为复杂,根据颗粒的运动状态可以表现出气体、流体和固体的力学行为。地质工程领域中,典型的地质灾害现象如滑坡、泥石流等都与颗粒物质力学密切有关,其本质即为由碎散物质组成地质体的固液相变。本文通过介绍颗粒物质的基本性质,颗粒物质力学中的阻塞相变、局部流变和非局部流变的剪切流动特性,以及常用的开展颗粒物质力学研究的试验方法,最后初步探讨了颗粒物质力学在工程地质领域内的应用前景。颗粒物质力学与工程地质的交叉融合,一方面可以拓展我国颗粒物质物理与力学的研究深度,同时也可以为我国重大工程及地质灾害防治的研究提供理论基础。
  • 图  1  阻塞相变图(Liu et al., 1998)

    Figure  1.  Jamming phase diagram(Liu et al., 1998)

    图  2  T=0平面的阻塞相图(Bi et al., 2011)

    Figure  2.  Jamming phase diagrams in the T=0 plane (Bi et al., 2011)

    图  3  4个系统不同倾角下Froude数$\mu /\sqrt {gh} $和h/hstop(θ)函数关系(Pouliquen,1999)

    Figure  3.  Froude number $\mu /\sqrt {gh} $ as a function of h/hstop(θ) for the four systems of beads and for different inclination angles(Pouliquen, 1999)

    图  4  摩擦系数μ和无量纲参数I的函数关系(Jop et al., 2006)

    Figure  4.  Friction coefficient μ as a function of the dimensionless parameter I(Jop et al., 2006)

    图  5  暗场透射偏光镜的光弹性技术原理示意图(Zadeh et al. 2019)

    Figure  5.  Schematic image of the photoelastic technique for a darkfield transmission polariscope(Zadeh et al. 2019)

    图  6  不同剪应变下颗粒材料内部的力链网络(Zheng et al., 2019a)

    Figure  6.  The snapshots of the force chain network at different strains(Zheng et al., 2019a)

  • Alsaydalani M O. 2020. Failure mechanism of a granular bed induced by a horizontal water jet using particle image velocimetry[J]. Ksce Journal of Civil Engineering, 24 (6): 1696-1705. doi: 10.1007/s12205-020-0574-4
    ASTM. 2015. Standard terminology for nondestructive examinations(E1316-14e)[S]. America: American Society for Testing and Materials.
    Athanassiadis A G, Partrick L P, Sidky E. 2014. X-ray tomography system to investigate granular materials during mechanical loading[J]. Review of Scientific Instruments, 85(8): 083708. doi: 10.1063/1.4893555
    Bi D P, Zhang J, Chakraborty, B, et al. 2011. Jamming by shear[J]. Nature, 480(7377): 355-358. doi: 10.1038/nature10667
    Campbell C S, Cleary P W, Hopkins M. 1995. Large-scale landslide simulations: Global deformation, velocities and basal friction[J]. Journal of Geophysical Research, 100(B5): 8267-8283. doi: 10.1029/94JB00937
    Campbell C S. 1990. Rapid granular flows[J]. Annual Review of Fluid Mechanics, 22: 57-92. doi: 10.1146/annurev.fl.22.010190.000421
    Campbell C S. 2006. Granular material flows-An overview[J]. Powder Technology, 162: 208-229. doi: 10.1016/j.powtec.2005.12.008
    Chen D Z, Zheng H, Wang D, et al. 2019. Discontinuous rate-stiffening in a granular composite modeled after cornstarch and water[J]. Nature Communications, 10: 1283. doi: 10.1038/s41467-019-09300-z
    Cheng Q G, Zhang Z Y, Huang R Q. 2007. Study on dynamics of rock avalanches: state of the art report[J]. Journal of Mountain Research, 25 (1): 72-84.
    Cheng Z, Wang J F. 2018. Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography[J]. Soils and Foundations, 58 (6): 1492-1510. doi: 10.1016/j.sandf.2018.08.008
    Chevaller B, Tsutsuml Y, Otanl J. 2019. Direct shear behavior of a mixture of sand and tire chips using X-ray computed tomography and discrete element method[J]. International Journal of Geosynthetics and Ground Engineering, 5(2): 7. doi: 10.1007/s40891-019-0160-3
    Chialvo S, Sun J, Sundaresan S. 2012. Bridging the rheology of granular flows in three regimes[J]. Physical Review E, 85(2): 021305. doi: 10.1103/PhysRevE.85.021305
    Da C F, Emam S, Prochnow M, et al. 2005. Rheophysics of dense granular materials: Discrete simulation of plane shear flows[J]. Physical Review E, 72(2): 021309. doi: 10.1103/PhysRevE.72.021309
    Dai Y L, Liu X J, Xia D H. 2020. Flow characteristics of three typical granular materials in near 2D moving beds[J]. Power Technology, 337: 220-231.
    Dixon N, Khanna R, Flint J A, et al. 2018. An acoustic emission landslide early warning system for communities in low-income and middle-income countries[J]. Landslides, 15(8): 1631-1644. doi: 10.1007/s10346-018-0977-1
    Dowling C A, Santi P M. 2014. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011[J]. Natural Hzards, 71(1): 203-227. doi: 10.1007/s11069-013-0907-4
    Dsouza P V, Nott P R. 2020. A non-local constitutive model for lar flow that incorporates dilatancy[J]. Journal of Fluid Mechanics, 888: R3.
    Edwards S F. 1990. The theory of powders[C]//Proceedings of th School of Physics. New York: North Holland.
    Eldin W C L. 2014. Pattern formation in vibrated beds of dry and wet granular materials[J]. Physical of Fluids, 26(1): 013301. doi: 10.1063/1.4860115
    Fu S J, Biwole P H, Mathis C, et al. 2018. Numerical and experimental comparison of complete three-dimensional particle tracking velocimetry algorithms for indoor airflow study[J]. Indoor and Built Environment, 27(4): 528-543. doi: 10.1177/1420326X16682294
    MiDi G D R. 2004. On dense granular flows[J]. European Physical Journal E, 14(4): 341-365. doi: 10.1140/epje/i2003-10153-0
    Garzo V, Dufty J W. 1999. Dense fluid transport for inelastic hard spheres[J]. Physical Review E, 59(5): 5895-5911. doi: 10.1103/PhysRevE.59.5895
    Gate M E, Wittmer J P, Bouchaud J P, et al. 1998. Jamming, force chains, and fragile matter[J]. Physical Review Letters, 81 (9): 1841-1844. doi: 10.1103/PhysRevLett.81.1841
    Ge Y F, Zhou T, Huo S L, et al. 2019. Energy transfer mechanism during movement and accumulation of rockslide avalanche[J]. Earth Science, 44(11): 3939-3949.
    Goldhirsch I. 2003. Rapid granular flows[J]. Annual Review of Fluid Mechanics, 35: 267-293. doi: 10.1146/annurev.fluid.35.101101.161114
    Henann D L, Kamrin K. 2013. A predictive, size-dependent continuum model for dense granular flows[C]//Proeedings of The National Academy of Sciences of The United States of America, 110 : 6730-6735.
    Huang B L, Zhang Q, Wang J, et al. 2020. Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles[J]. Physics of Fluids, 32(3): 033301. doi: 10.1063/1.5138709
    Huang R Q, Pei X J, Li T F. 2008. Basic characteristics and formation mechanism of the largest scale landslides at Daguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 16(6): 730-741.
    Huang Y, Zhang W J, Xu Q, et al. 2012. Run-out analysis of flow-like landslides triggered by the MS8. 0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 9(2): 275-283. doi: 10.1007/s10346-011-0285-5
    Iverson R M, George D L. 2014. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis[C]//Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 470(2170): 20130819.
    Iverson R M, Logan M, Denlinger R P. 2004. Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests[J]. Journal of Geophysical Research, 109(F01015): 1-16.
    Jackson R. 1983. Some mathematical and physical aspects of continuum models for the motion of granular materials[J]. Theory of Dispersed Multiphase Flow, 291-337.
    Jaeger H M, Nagel S R, Behringer R P. 1996. Granular solids, liquids, and gases[J]. Reviews of Modern Physics, 68 (4): 1259-1273. doi: 10.1103/RevModPhys.68.1259
    Janssen H A. 1895. Versuche uber getreidedruck in silozellen[J]. Z. Ver. Dtsch. Ing., 39(35): 1045-1049.
    Jmnt G. 1997. Pattern formation in granular avalanches[J]. Continuum Mechanics and Thermodaynamics, 9(6): 341-345. doi: 10.1007/s001610050075
    Johnson P A, Savage H, Knuth M, et al. 2008. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes[J]. Nature, 451(7174): 57-60. doi: 10.1038/nature06440
    Jop P, Forterre Y, Pouliquen O. 2006. A constitutive law for dense granular flows[J]. Nature, 441(7094): 727-730. doi: 10.1038/nature04801
    Kamrin K, Koval G. 2012. Nonlocal constitutive relation for steady granular flow[J]. Physical Review Letters, 108(17): 178301. doi: 10.1103/PhysRevLett.108.178301
    Kou B Q, Cao Y X, Li J D, et al. 2017. Granular materials flow like complex fluids[J]. Nature, 551(7680): 360. doi: 10.1038/nature24062
    Koval G, Roux J N, Corfdir A, et al. 2009. Annular shear of cohesionless granular materials: From the inertial to quasistatic regime[J]. Physical Review E, 79(2): 1-16.
    Laurent B, Krzysztof G, Selam W. 2020. Quantitative analysis of flow dynamics of organic granular materials inside a versatile silo model during time-lapse X-ray tomography experiments[J]. Computers and Electronics in Agriculture, 172: 105346. doi: 10.1016/j.compag.2020.105346
    Li G X. 2006. Characteristics and development of Tsinghua Elasto-plastic Model for soil[J]. Chinese Journal of Geotechnical Engineering, 28(1): 1-10.
    Li J D, Cao Y X, Cheng J, et al. 2014. Similarity of wet granular packing to gels[J]. Nature Communications, 5: 5014. doi: 10.1038/ncomms6014
    Lin W L, Liu A, Mao W, et al. 2020. Acoustic emission characteristics of a dry sandy soil subjected to drained triaxial compression[J]. Acta Geotechnica, 1-14.
    Liu A J, Nagel S R. 1998. Jamming is not just cool any more[J]. Nature, 396: 21-22. doi: 10.1038/23819
    Liu G Y, Xu W J, Tong B, et al. 2019. Study on dynamics of high-speed and long run-out landslide hazards based on block discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 38(8): 1557-1566.
    Majmudar T S, Behringer R P. 2005. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 435(7045): 1079-1082. doi: 10.1038/nature03805
    Mao W W, Aoyama S, Goto S, et al. 2015a. Acoustic emission characteristics of subsoil subjected to vertical pile loading in sand[J]. Journal of Applied Geophysics, 119: 119-127. doi: 10.1016/j.jappgeo.2015.05.017
    Mao W W, Towhata I. 2015b. Monitoring of single-particle fragmentation process under static loading using acoustic emission[J]. Applied Acoustics, 94: 39-45. doi: 10.1016/j.apacoust.2015.02.007
    Mao W W, Aoyama S, Goto S, et al. 2016. Behaviour and frequency characteristics of acoustic emissions from sandy ground under model pile penetration[J]. Near Surface Geophysics, 14(6): 515-525. doi: 10.3997/1873-0604.2016038
    Mao W W, Aoyama S, Towhata I. 2018a. Feasibility study of using acoustic emission signals for investigation of pile spacing effect on group pile behavior[J]. Applied Acoustics, 139: 189-202. doi: 10.1016/j.apacoust.2018.05.001
    Mao W W, Yang Y, Lin W L, et al. 2018b. High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior[J]. International Journal of Geomechchanics, 18(11): 04018143. doi: 10.1061/(ASCE)GM.1943-5622.0001287
    Mao W W, Aoyama S, Towhata I. 2020. A study on particle breakage behavior during pile penetration process using acoustic emission source location[J]. Geoscience Frontiers, 11(2): 413-427. doi: 10.1016/j.gsf.2019.04.006
    Mehta A, Barker G C. 2001. Bistability and hysteresis in tilted sandpiles[J]. Europhysics Letters, 56(5): 626-632. doi: 10.1209/epl/i2001-00566-9
    Mojtaba N, Mostafa B, Thomas K. 2017. Characteristics of acoustic emission from soil subjected to confined uniaxial compression[J]. Vadose Zone Journal, 16(7): 1-12.
    Mueth D M. 2003. Measurements of particle dynamics in slow, dense granular Couette flow[J]. Physical Review E, 67(1): 011304. doi: 10.1103/PhysRevE.67.011304
    Nedderman R M. 1992. Statics and Kinematics of granular materials[M]. Cambridge, UK: Cambridge University Press.
    Pouliquen O, Forterre Y. 2002. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[J]. Journal of Fluid Mechanics, 453: 133-151. doi: 10.1017/S0022112001006796
    Pouliquen O, Forterre Y. 2009. A non-local rheology for dense granular flows[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering, 367(1909): 5091-5107.
    Pouliquen O. 1999. Scaling laws in granular flows down rough inclined planes[J]. Physics of Fluids, 11(3): 542-548. doi: 10.1063/1.869928
    Reynolds O. 1885. On the dilatancy of media composed of rigid particles in contact, Philosophical[J]. Magazine and Journal of Science, 20(5): 469-481.
    Shieh C L, Chen Y S, Tsai Y J, et al. 2009. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China[J]. International Journal of Sediment Research, 24(2): 177-188. doi: 10.1016/S1001-6279(09)60025-1
    Silbert L E, Landry J W, Grese G S. 2003. Granular flow down a rough inclined plane: Transition between thin and thick piles[J]. Physics of Fluid, 15(1): 1-10. doi: 10.1063/1.1521719
    Smith A, Dixon N. 2015. Quantification of landslide velocity from active waveguide-generated acoustic emission[J]. Canadian Geotechnical Journal, 52(4): 413-425. doi: 10.1139/cgj-2014-0226
    Smith A, Dixon N. 2020a. Listening for deterioration and failure: towards smart geotechnical infrastructure[C]//Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction, 171(4): 131-143.
    Smith A, Heather-Smith H J, Dixon N. 2020b. Acoustic emission generated by granular soil-steel structure interaction[J]. Géotechnique Letters, 10(2): 119-127. doi: 10.1680/jgele.19.00065
    Smith A, Moore I D, Dixon N. 2019. Acoustic emission sensing of pipe-soil interaction: full-scale pipelines subjected to differential ground movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 145(12): 04019113. doi: 10.1061/(ASCE)GT.1943-5606.0002185
    Sudeshna R, Bert J S, Harmen P. 2019. Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry the effect of wall roughness[J]. European Physical Journal E, 42(2): 14. doi: 10.1140/epje/i2019-11778-x
    Sun Q C, Wang G Q, Hu K H. 2008. Thinking on several key issues of granular material mechanics[J]. Progress in Natural Science, 18(10): 1104-1110.
    Sun Q C, Hou M Y, Jin F. 2011. Physics and mechanics of granular matter[M]. Beijing: Science Press.
    Sun Q C, Liu X X, Zhang G H, et al. 2017. The mesoscopic structures of dense granular materials[J]. Advances in Mechanics, 47(1): 263-308.
    Sun Q C, Wang G Q. 2009. Introduction to the mechanics of granular matter[M]. Beijing: Science Press.
    Tang Z, Brzinski T A, Sheare M. et al. 2018. Nonlocal rheology of dense granular flow in annular shear experiments[J]. Soft Matter, 14(16): 3040-3048. doi: 10.1039/C8SM00047F
    Walliser H. 2002. Comment on "Reverse Brazil Nut Problem: Competition between Percolation and Condensation"[J]. Physical Review Letters, 89(18): 189603. doi: 10.1103/PhysRevLett.89.189603
    Wang B D, Song J, Li R, et al. 2019. A novel particle tracking velocimetry method for complex granular flow field[J]. Chinese Physical B, 29(1): 014207. doi: 10.1088/1674-1056/ab5936
    Wang D, Zheng H, Ji Y, et al. 2020. Shear of granular materials composed of ellipses[J]. Granular Matter, 22(1): 5. doi: 10.1007/s10035-019-0965-8
    Wang F W. 2019. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes[J]. Journal of Engineering Geology, 27(1): 98-107.
    Wang G F, Tian Y T, Gao Y L, et al. 2020. Relationship between movement characteristics of non-homogeneous debris flow and peak flow[J]. Journal of Engineering Geology, 28(5): 1028-1038.
    Wang M M, Wang D, Socolar J. et al. 2019. Jamming by shear in a dilating granular system[J]. Granular Matter, 21(4): 102. doi: 10.1007/s10035-019-0951-1
    Wang R Q, Wang X L, Liu H Y, et al. 2019. Identification and main controlling factor analysis of collapse and landslide based on fine DEM—Taking Jiacha Langxian section of Yarlung Zangbo suture zone as an example[J]. Journal of Engineering Geology, 27(5): 1146-1152.
    Wang Y Q, Wang Y J, Zhang J. 2020. Connecting shear localization with the long-range correlated polarized stress fields in granular materials[J]. Nature Communications, 11(1): 4349. doi: 10.1038/s41467-020-18217-x
    Wittmer J P, Claudin P, Cates M E, et al. 1996. An explanation for the central stress minimum in sand piles[J]. Nature, 382(6589): 336-338. doi: 10.1038/382336a0
    Xu C, Xu Y W, Yao X, et al. 2014. Three(nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 11: 441-461. doi: 10.1007/s10346-013-0404-6
    Yang H, Zhang G H, Wang Y J, et al. 2018. Measurement techniques of grain motion and inter-grain structures in dense granular materials[J]. Advances in Mechanics, 48: 541-590.
    Yin Y P. 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444.
    Zadeh A A, Bares J T, Brzinski T A, et al. 2019. Enlightening force chains: a review of photoelasticimetry in granular matter[J]. Granular Matter, 21(4): 83. doi: 10.1007/s10035-019-0942-2
    Zhang M, Yin Y P, Wu S R, et al. 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18(6): 805-817.
    Zhang W T, An Y, Liu Q Q, et al. 2020. Evolution of energy in submerged granular column collapse[J]. Chinese Pjysics Letters, 37(7): 074502. doi: 10.1088/0256-307X/37/7/074502
    Zhao Y Q, Bares J, Zheng H, et al. 2019. Shear-jammed, fragile, and steady states in homogeneously strained granular materials[J]. Physical Review Letters, 123(15): 158001. doi: 10.1103/PhysRevLett.123.158001
    Zheng G, Xu Q, Peng S Q. 2019. Mechanism analysis of the accumulation characteristics of rock avalanche[J]. Journal of Engineering Geology, 27(4): 842-852.
    Zheng H, Dijksman J A, Behringer R P. 2014. Shear jamming in granular experiments without basal friction[J]. EPL Europhysical Letter, 107(3): 34005. doi: 10.1209/0295-5075/107/34005
    Zheng H, Wang D, Bares J, et al. 2018a. Sinking in a bed of grains activated by shearing[J]. Physical Review E, 98(1): 010901. doi: 10.1103/PhysRevE.98.010901
    Zheng H, Wang D, Chen D Z, et al. 2018b. Intruder friction effects on granular impact dynamics[J]. Physical Review E, 98(3): 032904. doi: 10.1103/PhysRevE.98.032904
    Zheng H, Wang D, Behringer R P. 2019a. Experimental study on granular biaxial test based on photoelastic technique[J]. Engineering Geology, 260: 105208. doi: 10.1016/j.enggeo.2019.105208
    Zheng H, Wang D, Tong X M, et al. 2019b. Granular scale responses in the shear band region[J]. Granular, Matter, 21(4): 107. doi: 10.1007/s10035-019-0958-7
    Zheng H. 2014. Experimental study on deformation of geo-granular materials based on photoelastic techniques[J]. Journal of Engineering Geology, 22(5): 851-854.
    Zhu C Q, Huang Y, Sun J. 2020. Solid-like and liquid-like granular flows on inclined surfaces under vibration-Implications for earthquake-induced landslides[J]. Computer and Geotechnic, 123: 103598. doi: 10.1016/j.compgeo.2020.103598
    程谦恭, 张倬元, 黄润秋. 2007. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007
    葛云峰, 周婷, 霍少磊, 等. 2019. 高速远程滑坡运动堆积过程中的能量传递机制[J]. 地球科学, 44(11): 3939-3949.
    黄润秋, 裴向军, 李天斌. 2008. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 16(6): 730-741. doi: 10.3969/j.issn.1004-9665.2008.06.002
    李广信. 2006. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 28 (1): 1-10. doi: 10.3321/j.issn:1000-4548.2006.01.001
    刘广煜, 徐文杰, 佟彬, 等. 2019. 基于块体离散元的高速远程滑坡灾害动力学研究[J]. 岩石力学与工程学报, 38(8): 1557-1566.
    孙其诚, 厚美瑛, 金峰, 等. 2011. 颗粒物质物理与力学[M]. 北京: 科学出版社.
    孙其诚, 刘晓星, 张国华, 等. 2017. 密集颗粒物质的介观结构[J]. 力学进展, 47 (1): 263-308.
    孙其诚, 王光谦, 胡凯衡. 2008. 颗粒物质力学几个关键问题的思考[J]. 自然科学进展, 18(10): 1104-1110. doi: 10.3321/j.issn:1002-008X.2008.10.003
    孙其诚, 王光谦. 2009. 颗粒物质力学导论[M]. 北京: 科学出版社.
    汪发武. 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J]. 工程地质学报, 27 (1): 98-107. doi: 10.13544/j.cnki.jeg.2019-034
    王高峰, 田运涛, 高幼龙, 等. 2020. 非匀质泥石流运动特征与峰值流量关系研究[J]. 工程地质学报, 28(5): 1028-1038. doi: 10.13544/j.cnki.jeg.2020-205
    王瑞琪, 王学良, 刘海洋, 等. 2019. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查—朗县段为例[J]. 工程地质学报, 27(5): 1146-1152. doi: 10.13544/j.cnki.jeg.2019056
    杨晖, 张国华, 王宇杰, 等. 2018. 密集颗粒体系的颗粒运动及结构测量技术[J]. 力学进展, 48: 541-590.
    殷跃平. 2008. 汶川8级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001
    张明, 殷跃平, 吴树仁, 等. 2010. 高速远程滑坡碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 18(6): 805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001
    郑光, 许强, 彭双麒. 2019. 滑坡-碎屑流的堆积特征及机理分析[J]. 工程地质学报, 27(4): 842-852. doi: 10.13544/j.cnki.jeg.2018-241
    郑虎. 2014. 基于光弹测试技术的颗粒材料细观变形试验研究[J]. 工程地质学报, 22(5): 851-854. doi: 10.13544/j.cnki.jeg.2014.05.12
  • 加载中
图(6)
计量
  • 文章访问数:  1051
  • HTML全文浏览量:  324
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-02-01
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回