基于OpenFOAM与PFC耦合方法的水下滑坡数值模拟研究

陈闻潇 石崇 单治钢 张一平 李汪洋

陈闻潇, 石崇, 单治钢, 等. 2021. 基于OpenFOAM与PFC耦合方法的水下滑坡数值模拟研究[J].工程地质学报, 29(6): 1823-1830. doi: 10.13544/j.cnki.jeg.2021-0026
引用本文: 陈闻潇, 石崇, 单治钢, 等. 2021. 基于OpenFOAM与PFC耦合方法的水下滑坡数值模拟研究[J].工程地质学报, 29(6): 1823-1830. doi: 10.13544/j.cnki.jeg.2021-0026
Chen Wenxiao, Shi Chong, Shan Zhigang, et al. 2021. Numerical simulation of subaqueous landslide based on OpenFOAM and PFC coupling method[J].Journal of Engineering Geology, 29(6): 1823-1830. doi: 10.13544/j.cnki.jeg.2021-0026
Citation: Chen Wenxiao, Shi Chong, Shan Zhigang, et al. 2021. Numerical simulation of subaqueous landslide based on OpenFOAM and PFC coupling method[J].Journal of Engineering Geology, 29(6): 1823-1830. doi: 10.13544/j.cnki.jeg.2021-0026

基于OpenFOAM与PFC耦合方法的水下滑坡数值模拟研究

doi: 10.13544/j.cnki.jeg.2021-0026
基金项目: 

国家自然科学基金面上项目 51679071

江苏省自然科学基金 BK20171434

详细信息
    通讯作者:

    陈闻潇(1996-),男,硕士生,主要从事岩土力学与工程方面的研究工作. E-mail:cwx6810106@126.com

  • 中图分类号: P642.22

NUMERICAL SIMULATION OF SUBAQUEOUS LANDSLIDE BASED ON OPENFOAM AND PFC COUPLING METHOD

  • 摘要: 水下滑坡是常见的地质灾害之一,为解决离散元PFC难以模拟水下流体环境的问题,提出采用计算流体力学OpenFOAM与离散元PFC耦合的计算方法。针对流固耦合中的尺度相似性问题,提出了适用于该耦合方法的相似性方法并验证了其可行性。通过典型案例分析了基于该耦合方法的水下滑坡动力学特性及堆积形态,并与单向耦合水下滑坡和陆上滑坡结果进行了对比。结果表明该耦合方法能够较好地模拟水下滑坡运动规律,主要表现为滑坡体前端厚度较大并呈椭圆面;水下滑坡运动过程和堆积形态与陆上滑坡差异较大,OpenFOAM-PFC双向耦合与单向耦合方法相比具有优越性。
  • 图  1  耦合交互方法流程图

    Figure  1.  Flowchart of coupling interaction method

    图  2  不同时刻的颗粒下落速度

    Figure  2.  Falling velocities of particles at different times

    图  3  初始计算模型及网格划分

    Figure  3.  Initial calculation model and mesh generation

    图  4  耦合模型计算结果

    a. 29.9s位移图(单位:m);b. 29.9s流体速度矢量图(单位:m ·s-1);c. 39.8s位移图(单位:m);d. 39.8s流体速度矢量图(单位:m ·s-1)

    Figure  4.  The calculation results of the coupling model

    图  5  滑坡结束后堆积状态

    a. 滑坡体位移图(单位:m);b. 网格孔隙率图

    Figure  5.  The accumulation state after the landslide

    图  6  滑坡体的平均速度位移曲线

    Figure  6.  Average speed and displacement curve of landslide body

    图  7  滑坡位移曲线与运动状态图

    a. 陆上滑坡;b. 流固单向耦合

    Figure  7.  Diagram of landslide displacement curve and motion state

    图  8  滑坡体速度和位移曲线

    a. 平均速度曲线;b. 平均位移曲线

    Figure  8.  Velocity and displacement curves of the landslide

    表  1  相似性参数及验证结果

    Table  1.   Similarity parameters and results

    土体颗粒半径/mm 放大倍数N 颗粒个数 颗粒总体积/cm3 颗粒平均速度/m·s-1 颗粒平均位移/m 颗粒运动时间/s 计算所需时间/s
    1 0.2 125 000 523.6 0.6570 0.2780 0.5 37 689
    1.75 0.35 23 324 523.6 0.6571 0.2781 0.5 654
    2.5 0.5 8000 523.6 0.6571 0.2782 0.5 118
    5 1 1000 523.6 0.6571 0.2782 0.5 17
    10 2 125 523.6 0.6572 0.2783 0.5 8
    50 10 1 523.6 0.6574 0.2786 0.5 6
    下载: 导出CSV

    表  2  计算模型细观力学参数

    Table  2.   The meso mechanical parameters of calculation model

    细观模型 接触黏结模量/Pa 法向/切向刚度比 接触黏结强度/Pa 接触黏结张拉强度/Pa 摩擦系数
    土体 8e7 3.0 1.4e5 2.0e5 0.4
    下载: 导出CSV
  • Alves T M. 2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review[J]. Marine & Petroleum Geology, 67 : 262-285. http://www.onacademic.com/detail/journal_1000038134718310_0ef5.html
    Bi Q J. 2018. Analysis on penetrative failure characteristics of end soil in sand tunnel with shield tunneling based on PFC-CFD coupline[D]. Yantai: Ludong University.
    Cao W, Li W C, Tang B, et al. 2017. PFC study on building of 2D and 3D landslide models[J]. Journal of Engineering Geology, 25 (2): 455-462. http://search.cnki.net/down/default.aspx?filename=GCDZ201702024&dbcode=CJFD&year=2017&dflag=pdfdown
    Chen W X, Shi C, Li W Y, et al. 2020. Numerical simulation of rainfall landslide based on continuous-discontinuous coupling method[J]. Henan Science, 38 (5): 763-770.
    Chen X, Shi C, Yang J X. 2020. Effect of micro characteristics of soil-rock mixture slope on formation of sliding surface[J]. Journal of Engineering Geology, 28 (4): 813-821.
    Ding H H, Zhang T, Su Y, et al. 2013. Study on multi-span fluid conveying pipe with bidirectional FSI method[J]. Journal of Fuzhou University(Natural Science Edition), 41 (2): 242-246. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FZDZ201302021.htm
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Itasca Consulting Group, Inc. 2014. PFC-Particle flow code, Ver. 5.0[S]. Minneapolis: Itasca.
    Jackson R. 2000. The dynamics of fluidized particles[M]. New York: Cambridge University Press.
    Jacobsen N G, Van Gent M R A, Wolters G. 2015. Numerical analysis of the interaction of irregular waves with two dimensional permeable coastal structures[J]. Coastal Engineering, 102 : 13-29. doi: 10.1016/j.coastaleng.2015.05.004
    Jiang M J, Zhang W C. 2014. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 36 (5): 793-801. http://www.researchgate.net/profile/Mingjing_Jiang/publication/287288813_Coupled_CFD-DEM_method_for_soils_incorporating_equation_of_state_for_liquid/links/56812d0208ae051f9aec2e7b.pdf
    Jiang M J, Shen Z F, Wu D. 2018. CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone[J]. Landslides, 15 (11): 2227-2241. doi: 10.1007/s10346-018-1035-8
    Jing L, Guo S Y, Zhao T. 2019. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 40 (1): 388-394. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901041.htm
    Liu Y C, Xiao Q, Incecik A, et al. 2017. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines[J]. Renewable Energy, 112 : 280-301. doi: 10.1016/j.renene.2017.04.052
    Liu G, Rong G, Peng J, et al. 2015. Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model[J]. Engineering Geology, 193 : 256-266. doi: 10.1016/j.enggeo.2015.04.019
    Milne J. 1897. Sub-oceanic changes[J]. The Geographical Journal, 10 (2): 129-146. doi: 10.2307/1774597
    Ni X D, Wang Y, Wang F. 2009. Simulation of particle flow code for similarity analysis of seepage deformation[J]. Journal of Civil, Architectural and Environmental Engineering, 31 (3): 55-60. http://www.researchgate.net/publication/288071157_Simulation_of_particle_flow_code_for_similarity_analysis_of_seepage_deformation
    Sassa S, Takagawa T. 2019. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 16 : 195-200. doi: 10.1007/s10346-018-1114-x
    Shimizu Y. 2004. Fluid Coupling in PFC2D and PFC3D, in numerical modeling in micromechanics via particle methods[C]//Proceedings of the 2nd International PFC Symposium: 281-287.
    Shojaeefard M H, Zare J, Nourbakhsh S D. 2017. Developing a hybrid procedure of one dimensional finite element method and CFD simulation for modeling refrigerant flow mal-distribution in parallel flow condenser[J]. International Journal of Refrigeration, 73 : 39-53. doi: 10.1016/j.ijrefrig.2016.09.005
    Sun Q C, Wang G Q. 2008. Review on granular flow dynamics and its discrete element method[J]. Advances in Mechanics, 38 (1): 87-100. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ200801007.htm
    Terry J P, Winspear N, Goff J, et al. 2017. Past and potential tsunami sources in the south China Sea: A Brief Synthesis[J]. Earth-Science Reviews, 167 : 47-61. doi: 10.1016/j.earscirev.2017.02.007
    Wang Y, Ni X. 2013. Hydro-mechanical analysis of piping erosion based on similarity criterion at micro-level by PFC3D[J]. European Journal of Environmental and Civil Engineering, 17 (S1): 187-204. doi: 10.1080/19648189.2013.834594?cookieSet=1
    Xiu Z X, Liu L J, Xie Q H. 2016. Sensitivity analysis of submarine landslide mass movement based on the small-scale numerical model[J]. Marine Science Bulletin, 35 (4): 380-385. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=HUTB201604003&dbcode=CJFD&year=2016&dflag=pdfdown
    Yang Q L. 2012. The stability evaluation and elements analysis of submarine landslides[D]. Dalian: Dalian University of Technology.
    Zhang Q, Zhang X P, Ji P Q, et al. 2020. Study of interaction mechanisms between multiple parallel weak planes and hydraulic fracture using the bonded-particle model based on moment tensors[J]. Journal of Natural Gas Science and Engineering, 76 : 103-176. http://www.sciencedirect.com/science/article/pii/S1875510020300305
    Zhang Q, Zhang X, Ji P. 2019. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 105 : 79-93. doi: 10.1016/j.compgeo.2018.09.012
    Zhou L, Fan X M, Xu Q, et al. 2019. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha river[J]. Journal of Engineering Geology, 27 (6): 1395-1404. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906022.htm
    Zhu C Q, Jia Y G, Zhang M S, et al. 2016. Surface sediment strength in bed-slope of northern south China sea[J]. Journal of Engineering Geology, 24 (5): 863-870. http://www.researchgate.net/publication/309740477_Surface_sediment_strength_in_bed-slope_of_northern_South_China_Sea
    毕庆杰. 2018. 基于PFC-CFD耦合的砂层盾构隧道端头土体渗透破坏特性研究[D]. 烟台: 鲁东大学.
    曹文, 李维朝, 唐斌, 等. 2017. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报, 25 (2): 455-462. doi: 10.13544/j.cnki.jeg.2017.02.024
    陈闻潇, 石崇, 李汪洋, 等. 2020. 基于连续-非连续耦合方法的降雨滑坡数值模拟研究[J]. 河南科学, 38 (5): 763-770. doi: 10.3969/j.issn.1004-3918.2020.05.013
    陈晓, 石崇, 杨俊雄. 2020. 土石混合体边坡细观特征对滑面形成影响研究[J]. 工程地质学报, 28 (4): 813-821. doi: 10.13544/j.cnki.jeg.2019-332
    丁欢欢, 张挺, 苏燕, 等. 2013. 基于双向流固耦合的多跨过桥水管模态分析[J]. 福州大学学报(自然科学版), 41 (2): 242-246.
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    蒋明镜, 张望城. 2014. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 36 (5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
    景路, 郭颂怡, 赵涛. 2019. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学, 40 (1): 388-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901041.htm
    倪小东, 王媛, 王飞. 2009. 渗透变形中相似性问题的颗粒流模拟[J]. 土木建筑与环境工程, 31 (3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200903009.htm
    孙其诚, 王光谦. 2008. 颗粒流动力学及其离散模型评述[J]. 力学进展, 38 (1): 87-100. doi: 10.3321/j.issn:1000-0992.2008.01.006
    修宗祥, 刘乐军, 解秋红, 等. 2016. 基于小尺度数值模型的海底滑坡运动敏感性分析[J]. 海洋通报, 35 (4): 380-385. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201604003.htm
    杨林青. 2012. 海底斜坡稳定性及滑移影响因素分析[D]. 大连: 大连理工大学.
    周礼, 范宣梅, 许强, 等. 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报, 27 (6): 1395-1404. doi: 10.13544/j.cnki.jeg.2019-037
    朱超祁, 贾永刚, 张民生, 等. 2016. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 24 (5): 863-870. doi: 10.13544/j.cnki.jeg.2016.05.016
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  47
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-06-15
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回