节理倾角对黄土力学特性影响试验研究

祝艳波 李红飞 兰恒星 彭建兵 高明明 韩宇涛

祝艳波, 李红飞, 兰恒星, 等. 2021. 节理倾角对黄土力学特性影响试验研究[J]. 工程地质学报, 29(4): 1178-1187. doi: 10.13544/j.cnki.jeg.2021-0051
引用本文: 祝艳波, 李红飞, 兰恒星, 等. 2021. 节理倾角对黄土力学特性影响试验研究[J]. 工程地质学报, 29(4): 1178-1187. doi: 10.13544/j.cnki.jeg.2021-0051
Zhu Yanbo, Li Hongfei, Lan Hengxing, et al. 2021. Experimental study on influence of loess joints angle on mechanical properties of loess[J]. Journal of Engineering Geology, 29(4): 1178-1187. doi: 10.13544/j.cnki.jeg.2021-0051
Citation: Zhu Yanbo, Li Hongfei, Lan Hengxing, et al. 2021. Experimental study on influence of loess joints angle on mechanical properties of loess[J]. Journal of Engineering Geology, 29(4): 1178-1187. doi: 10.13544/j.cnki.jeg.2021-0051

节理倾角对黄土力学特性影响试验研究

doi: 10.13544/j.cnki.jeg.2021-0051
基金项目: 

国家自然科学基金面上项目 41877247

国家自然科学基金重大项目 41790443

国家自然科学基金重大项目 41790440

详细信息
    通讯作者:

    祝艳波(1985-),男,博士,副教授,硕士生导师,主要从事岩土力学方面科研与教学工作. E-mail: zhuyanbo@chd.edu.cn

  • 中图分类号: P642.13+1

EXPERIMENTAL STUDY ON INFLUENCE OF LOESS JOINTS ANGLE ON MECHANICAL PROPERTIES OF LOESS

Funds: 

the National Natural Science Foundation of China 41877247

the National Natural Science Foundation of China 41790443

the National Natural Science Foundation of China 41790440

  • 摘要: 黄土节理种类多样、角度多变,是影响黄土力学性质的重要因素。为研究节理对黄土力学性质影响,开展含预制节理黄土试样单轴与三轴压缩强度试验,分析了非贯通节理对试样剪切破坏模式影响,探讨了节理倾角对黄土强度与变形特性影响规律。结果表明:节理试样剪切破坏均为压剪破坏,破坏模式可分为节理面与破裂面贯通型和节理面与破裂面斜交型,压力作用下非贯通节理尖端翼裂纹和次生裂纹不断萌生,易劣化扩展形成剪切破裂面;节理存在弱化了试样抗变形能力,单轴压缩条件下试样应力-应变曲线均呈应变软化型,预制节理降低屈服阶段变形模量,减小试样剪切破坏位移,加速试样剪切破坏;节理存在显著降低黄土强度,峰值强度与残余强度均随节理倾角呈现先减小后增大变化趋势,但变化幅度随围压增大而降低,黏聚力随节理倾角变化最为敏感,节理倾角60°时试样强度指标最低;预制节理倾角与黄土试样剪切破裂角越接近,节理面越易劣化贯通为剪切破裂面,试样抗变形能力越差,强度性质劣化越显著,试样越容易剪切破坏。研究成果为揭示黄土节理界面劣化对黄土边坡促滑机制提供参考。
  • 图  1  研究区及取样点

    Figure  1.  Study area and sampling site

    图  2  节理试样制备过程

    Figure  2.  Preparation process of joints samples

    图  3  试样剪切破坏模式

    Figure  3.  Shear failure modes of specimens

    图  4  次生裂纹种类

    Figure  4.  Types of secondary cracks

    图  5  试样应力-应变曲线

    Figure  5.  Stress-strain curves of samples

    图  6  不同节理倾角试样应力-应变曲线

    Figure  6.  Stress-strain curves of samples with different joints angles

    图  7  试样剪切破坏位移变化

    Figure  7.  Variation of shear failure displacement of samples

    图  8  不同围压下试样应力-应变曲线

    a. 不同围压;b. 不同节理倾角

    Figure  8.  Stress-strain curves of samples under different confining pressure

    图  9  试样峰值强度随节理倾角变化

    a. 峰值强度变化; b. 峰值强度劣化程度

    Figure  9.  Variation of peak strength of samples with joints angle

    图  10  试样残余强度随节理倾角变化

    a. 残余强度变化;b. 残余强度劣化程度

    Figure  10.  Variation of residual strength of samples with joints angle

    图  11  试样抗剪强度与节理倾角、围压变化关系

    Figure  11.  Variation of shear strength with joints angle and confining pressure

    图  12  试样抗剪强度指标变化

    a. 黏聚力与节理倾角关系;b. 内摩擦角与节理倾角关系

    Figure  12.  Variation of shear strength index

    表  1  黄土基本物性指标

    Table  1.   Basic physical properties of loess

    干密度/g·cm-3 含水率/% 塑限WP/% 液限WL/% 塑性指数IP
    1.72 21.67 19.36 34.90 15.54
    下载: 导出CSV
  • Ashby M F, Hallam S D. 1986. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica, 34 (3): 497-510. doi: 10.1016/0001-6160(86)90086-6
    Bai B, Han X L. 2011. Experimental research on shear strength of the intact loess joints[J]. Low Temperature Architecture Technology, 33 (7): 91-93.
    Cheng L H, Nie R S, Liu F. 2017. An experimental study of the uniaxial compressive strength of fractured loess[J]. Hydrogeology & Engineering Geology, 44 (5): 80-85, 91.
    Cheng Y X, Cao B B, Zhang D W. 2019. Experimental study on the effect of fractures density on shear strength of loess[J]. Science Technology and Engineering, 19 (28): 284-289.
    Fang J F. 2010. Experimental research on shear strength and loess permeability of the intact loess joints and engineering[D]. Xi'an: Xi'an University of Architecture and Technology.
    George R O. 2014. Analysis of the stability of embankments on clay foun-dations[J]. International Journal of Engineering and Technology Research, 2 (1): 1-11.
    Horii H, Nemat-Nasser S. 1985. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. Journal of Geophysical Research, 90 (B4): 3105-3125. doi: 10.1029/JB090iB04p03105
    Hu X W, Li Q F, Zhao Z S, et al. 1994. Mechanical properties of fissured clay[J]. Chinese Journal of Geotechnical Engineering, 16 (4): 81-88.
    Huang Y H, Yang S Q, Ju Y, et al. 2016. Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 38 (7): 1212-1220.
    Jia H, He Y L, Yang S X. 2011. Ruptrue and mechanics behavior of loess affected by joints in it[J]. China Rural Water and Hydropower, (11): 77-81.
    Kang C Y, Wang S K, Pan D L, et al. 2020. Geometric differences and topology of tectonic and vertical joints of loess[J]. Journal of Yangtze River Scientific Research Institute, 37 (9): 115-121, 127.
    Li T L, Wang H, Fu Y K, et al. 2014. Test simulation on the forming mechanism of loess vertical joints[J]. Journal of Earth Sciences and Environment, 36 (2): 127-134.
    Liu X J, Kong Q, Sun X J, et al. 2017. Large-scale direct shear test study on natural loess joint[J]. Journal of Xi'an University of Architecture and Technology(Natural Science Edition), 49 (5): 680-684, 707.
    Lu Q Z, Ge X R, Peng J B, et al. 2009. Failure characteristics of fractured loess under triaxial compression condition[J]. Rock and Soil Mechanics, 30 (12): 3689-3694.
    Lu Q Z, Chen S F, Peng J B, et al. 2015. Stress-strain characteristics and deformation failure mechanism of fractured loess under triaxial compression[J]. China Journal of Highway and Transport, 28 (1): 8-16.
    Marsland A. 1972. The shear strength of stiff fissured clays[C]//Proceedings Roscoe Memorial Symposium on Stress-strain Behavior of Soils. London: Cambridge University.
    Peng J B, Lin H Z, Wang Q Y, et al. 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22 (4): 684-691.
    Peng J B, Wang Q Y, Zhuang J Q, et al. 2020. Dynamic formation mechanism of landslide disaster on the loess plateau[J]. Journal of Geomechanics, 26 (5): 714-730.
    Perk C H, Bobet A. 2010. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression[J]. Engineering Fracture Mechanics, 77 (14): 2727-2748. doi: 10.1016/j.engfracmech.2010.06.027
    Potts D M, Dounias G T, Vaughan P R. 1990. Finite element analysis of progressive failure of Carsington embankment[J]. Géotechnique, 40 (1): 79-101. doi: 10.1680/geot.1990.40.1.79
    Prudencio M, Jan M V S. 2007. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics & Mining Sciences, 44 : 890-902.
    Sarfarazi V, Ghazvinian A, Schubert W, et al. 2014. Numerical simulation of the process of fracture of echelon rock joints[J]. Rock Mechanics and Rock Engineering, 47 : 1355-1371. doi: 10.1007/s00603-013-0450-3
    Skempton A W. 1964. Long-term stability of clay slopes[J]. Géotechnique, 14 (2): 77-102. doi: 10.1680/geot.1964.14.2.77
    Sun P, Peng J B, Chen L W, et al. 2016. An experimental study of the mechanical characteristics of fractured loess in western China[J]. Bulletin of Engineering Geology and the Environment, 75 (4): 1639-1647. doi: 10.1007/s10064-015-0793-y
    Sun P, Peng J B, Wu S R, et al. 2015. An experimental study on mechanical properties of fractured loess[J]. Journal of Central South University(Science and Technology), 46 (6): 2188-2195.
    Wang J M, Ni Y L, Sun J Z. 1994. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology, 2 (4): 31-42.
    Wang J M. 1996. The theory and application of loess structural joints[M]. Beijing: China Water Resources and Hydropower Press.
    Wang L L, Li N, He M, et al. 2020. Experimental study on mechanical properties of jointed loess based on a replastic sample preparation method[J]. Journal of Disaster Prevention and Mitigation Engineering, 40 (1): 35-42.
    Wang S K, Peng J B, Zhuang J Q, et al. 2019. Underlying mechanisms of the geohazards of macro Loess discontinuities on the Chinese Loess Plateau[J]. Engineering Geology, 263: 05357.
    Wang T X, Luo Y, Wang J J. 2013. Experimental research on shear strength of the loess joints[J]. Chinese Journal of Underground Space and Engineering, 9 (3): 497-501, 551.
    Wei B X, Huang Z, Gao B. 2015. Research on the relationship between fracture development rules and strength of the compacted expansive soil[J]. Hydrogeology and Engineering Geology, 42 (1): 100-105.
    Yang S Q, Yang D S, Jing H W, et al. 2012. An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures[J]. Rock Mechanics and Rock Engineering, 45 (4): 563-582. doi: 10.1007/s00603-011-0206-x
    Ye W J, Li C Q, Ma W C. 2016. Mechanism fractured loess expansion joints under the effect of wet-dry cycle[J]. Science Technology and Engineering, 16 (30): 122-127.
    Zhang D W. 2018. Experimental study on shear strength of fissured loess[D]. Xi'an: Chang'an University.
    Zhou B. 2013. Fissured loess plane strain compression test[D]. Xi'an: Chang'an University.
    Zou X Y, Xu Q, Peng D L, et al. 2018. Influencing factors of formation of typical loess sinkhole in Heifangtai[J]. Science Technology and Engineering, 18 (28): 58-64.
    白冰, 韩晓雷. 2011. 原状黄土人工节理抗剪强度特性试验研究[J]. 低温建筑技术, 33 (7): 91-93. doi: 10.3969/j.issn.1001-6864.2011.07.042
    成玉祥, 曹宝宝, 张大伟. 2019. 裂隙密度对黄土抗剪强度影响的试验研究[J]. 科学技术与工程, 19 (28): 284-289. doi: 10.3969/j.issn.1671-1815.2019.28.043
    程龙虎, 聂如松, 刘飞. 2017. 裂隙性黄土单轴抗压试验研究[J]. 水文地质工程地质, 44 (5): 80-85, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201705015.htm
    房江锋. 2010. 黄土节理抗剪强度和渗透性试验研究及工程应用[D]. 西安: 西安建筑科技大学.
    胡卸文, 李群丰, 赵泽三, 等. 1994. 裂隙性黏土的力学特性[J]. 岩土工程学报, 16 (4): 81-88. doi: 10.3321/j.issn:1000-4548.1994.04.011
    黄彦华, 杨圣奇, 鞠杨, 等. 2016. 断续裂隙类岩石材料三轴压缩力学特性试验研究[J]. 岩土工程学报, 38 (7): 1212-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607007.htm
    贾晖, 和耀林, 杨世贤. 2011. 节理对黄土破坏形态和力学性质的影响研究[J]. 中国农村水利水电, (11): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201111023.htm
    康尘云, 王少凯, 潘登丽, 等. 2020. 黄土垂直和构造节理的几何差异性及拓扑学研究[J]. 长江科学院院报, 37 (9): 115-121, 127. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202009020.htm
    李同录, 王红, 付昱凯, 等. 2014. 黄土垂直节理形成机理的试验模拟[J]. 地球科学与环境学报, 36 (2): 127-134. doi: 10.3969/j.issn.1672-6561.2014.02.018
    刘小军, 孔庆, 孙晓骥, 等. 2017. 黄土天然节理大型直剪试验研究[J]. 西安建筑科技大学学报(自然科学版), 49 (5): 680-684, 707. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201705010.htm
    卢全中, 葛修润, 彭建兵, 等. 2009. 三轴压缩条件下裂隙性黄土的破坏特征[J]. 岩土力学, 30 (12): 3689-3694. doi: 10.3969/j.issn.1000-7598.2009.12.022
    卢全中, 陈树峰, 彭建兵, 等. 2015. 三轴压缩条件下裂隙性黄土应力-应变特性及变形破坏机制[J]. 中国公路学报, 28 (1): 8-16. doi: 10.3969/j.issn.1001-7372.2015.01.002
    彭建兵, 林鸿州, 王启耀, 等. 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22 (4): 684-691. doi: 10.13544/j.cnki.jeg.2014.04.014
    彭建兵, 王启耀, 庄建琦, 等. 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26 (5): 714-730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htm
    孙萍, 彭建兵, 吴树仁, 等. 2015. 裂隙性黄土力学特性试验研究[J]. 中南大学学报(自然科学版), 46 (6): 2188-2195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201506029.htm
    王景明, 倪玉兰, 孙建中. 1994. 黄土构造节理研究及其应用[J]. 工程地质学报, 2 (4): 31-42. http://www.gcdz.org/article/id/9916
    王景明. 1996. 黄土构造节理的理论及其应用[M]. 北京: 中国水利水电出版社.
    王丽丽, 李宁, 何敏, 等. 2020. 基于一种重塑性制样方法的节理黄土力学特性试验研究[J]. 防灾减灾工程学报, 40 (1): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202001005.htm
    王铁行, 罗扬, 王娟娟. 2013. 黄土节理抗剪强度特性试验研究[J]. 地下空间与工程学报, 9 (3): 497-501, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201303007.htm
    韦秉旭, 黄震, 高兵. 2015. 压实膨胀土表面裂隙发育规律及与强度关系研究[J]. 水文地质工程地质, 42 (1): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501018.htm
    叶万军, 李长清, 马伟超. 2016. 干湿循环作用下黄土节理裂隙发育扩张的机制研究[J]. 科学技术与工程, 16 (30): 122-127. doi: 10.3969/j.issn.1671-1815.2016.30.020
    张大伟. 2018. 裂隙黄土抗剪强度试验研究[D]. 西安: 长安大学.
    周彬. 2013. 裂隙性黄土平面应变压缩试验研究[D]. 西安: 长安大学.
    邹锡云, 许强, 彭大雷, 等. 2018. 黑方台典型黄土洞穴形成的影响因素[J]. 科学技术与工程, 18 (28): 58-64. doi: 10.3969/j.issn.1671-1815.2018.28.007
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  49
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-03-13
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回