黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究

韩振华 张路青 周剑 王颂

韩振华, 张路青, 周剑, 等. 2021. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究[J].工程地质学报, 29(6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052
引用本文: 韩振华, 张路青, 周剑, 等. 2021. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究[J].工程地质学报, 29(6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052
Han Zhenhua, Zhang Luqing, Zhou Jian, et al. 2021. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052
Citation: Han Zhenhua, Zhang Luqing, Zhou Jian, et al. 2021. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052

黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究

doi: 10.13544/j.cnki.jeg.2021-0052
基金项目: 

中国科学院地质与地球物理研究所重点部署项目 IGGCAS-201903

国家自然科学基金 42107190

详细信息
    作者简介:

    韩振华(1989-),女,博士,主要从事地质灾害与地质工程研究. E-mail: hanzhenhua@mail.iggcas.ac.cn

    通讯作者:

    张路青(1973-),男,博士,研究员,主要从事地质灾害与地质工程研究. E-mail: zhangluqing@mail.iggcas.ac.cn

  • 中图分类号: O742+.6;P619.23+1

EFFECT OF CLAY MINERAL GRAIN CHARACTERISTICS ON MECHANICAL BEHAVIOURS OF HYDRATE-BEARING SEDIMENTS

Funds: 

the Key Research Program of the Institute of Geology & Geophysics, CAS IGGCAS-201903

National Natural Science Foundation of China 42107190

  • 摘要: 含水合物的沉积物力学参数是水合物储层稳定性评价的基础数据。我国南海神狐海域含水合物的沉积物中含大量的黏土,深入了解黏土矿物对沉积物力学特性的影响对水合物开采具有十分重要的意义。基于PFC三轴压缩模拟,首先分析了沉积物中不含水合物时,黏土矿物颗粒特征的力学效应,然后分析了水合物对颗粒的胶结作用和围压对沉积物力学特性的影响。结果表明,不含水合物模型的偏应力-应变曲线呈明显的应变硬化特征。黏土矿物的含量、颗粒形状和排列对沉积物三轴压缩特性具有显著影响。黏土矿物含量的增多对沉积物力学强度具有明显的降低作用,黏土矿物形状为条形的沉积物强度和弹性模量要明显高于圆颗粒模型,在细观上受颗粒平均接触数影响,条形黏土颗粒的定向排列使模型的力学参数具有各向异性。水合物对颗粒的胶结作用可显著提高模型的峰值强度和弹性模量,随着颗粒胶结程度的增大和围压的减小,含水合物的沉积物的破坏方式由塑性破坏向脆性破坏转换。
  • 图  1  我国不同海域的天然气水合物样品(刘昌岭等,2017)

    a. 取自南海神狐海域的样品;b. 取自珠江口盆地东部海域的样品

    Figure  1.  Natural gas hydrate samples from different sea areas in China(Liu et al., 2017)

    图  2  颗粒和平行黏结的受力-位移关系(Han et al., 2019)

    a. 接触刚度模型;b. 平行黏结模型

    Figure  2.  Force-displacement behavior of the grain and the parallel bond(Han et al., 2019)

    图  3  南海神狐海域沉积物的颗粒组分分布(张辉等,2016)

    Figure  3.  The grain size distribution of sediments from Shenhu area of South China Sea(Zhang et al., 2016)

    图  4  水合物在沉积物孔隙中的3种主要赋存形式

    a. 填充模式;b. 持力体模式;c. 胶结模式

    Figure  4.  Three main distribution forms of hydrate in sediments

    图  5  颗粒间胶结程度与半径乘子关系示意图

    Figure  5.  Relationship between the interparticle cementation degree and radius multiplier

    图  6  条形黏土矿物颗粒单元

    Figure  6.  Striped clay mineral grain unit

    a. Se=1.0; b. Se=1.5; c. Se=2.0; d. Se=2.5; e. Se=3.0; f. Se=3.5

    图  7  方案1中不同黏土矿物含量模型的偏应力-应变曲线

    Figure  7.  Deviatoric stress-strain curves of numerical models with different clay mineral content in scenario 1

    图  8  方案1中黏土矿物含量对模型宏观力学参数的影响(围压1 MPa)

    a. 峰值强度;b. 弹性模量; c. 泊松比

    Figure  8.  Effects of clay mineral content on model mechanical properties in scenario 1(confining pressure of 1 MPa)

    图  9  方案2中黏土矿物形状对模型宏观力学参数的影响(围压1 MPa)

    a. 峰值强度; b. 弹性模量; c. 泊松比

    Figure  9.  Effects of clay mineral grain shape on model mechanical properties in scenario 2(confining pressure of 1 MPa)

    图  10  黏土矿物形状与颗粒平均接触数量的关系

    Figure  10.  Relationship between the clay mineral shape and the average contact number of grains

    图  11  方案3中黏土矿物颗粒方向对模型宏观力学参数的影响(围压1 MPa)

    a. 峰值强度; b. 弹性模量; c. 泊松比

    Figure  11.  Effects of clay mineral grain arrangement on model mechanical properties in scenario 3(confining pressure of 1 MPa)

    图  12  不同黏土矿物颗粒排列下模型内部接触应力分布(以β=0°和90°模型为例,蓝色:黏土颗粒,黄色:砂颗粒)

    Figure  12.  Distribution of the contact force under different clay grains arrangement

    a. β=0°; b. β=90°

    图  13  方案4中不同围压下6种颗粒胶结程度模型的偏应力-应变曲线

    Figure  13.  Deviatoric stress-strain curves of models with different interparticle cementation degree and confining pressure in scenario 4

    图  14  方案4中颗粒胶结程度对模型宏观力学参数的影响(围压2 MPa)

    a. 峰值强度; b. 弹性模量; c. 泊松比

    Figure  14.  Effects of interparticle cementation degree on model mechanical properties in scenario 4 (confining pressure of 2 MPa)

    图  15  黏结半径乘子为0.6时不同围压下模型的偏应力-应变曲线

    Figure  15.  Deviatoric stress-strain curves of model with radius multiplier of 0.6 under different confining pressure

    图  16  围压2 MPa时6种颗粒胶结程度不同模型的破裂形态(黑色:张拉裂纹;红色:剪切裂纹)

    Figure  16.  Failure mode of the models with different interparticle cementation degree(black: tensile cracks, red: shear cracks)

    a. λ=0; b. λ=0.2; c. λ=0.4; d. λ=0.6; e. λ=0.8; f. λ=1.0

    表  1  PFC三轴压缩试验模型细观参数

    Table  1.   Micro mechanical parameters of numerical model

    参数类型 砂颗粒 黏土颗粒
    颗粒 粒径/mm 0.05 0.03
    粒径比 1.66 1.66
    密度/kg·m-3 2050 1900
    模量/MPa 800 400
    刚度比 1.5 1.5
    摩擦系数 0.7 0.3
    平行黏结 法向强度/MPa 5
    切向强度/MPa 5
    模量/MPa 600
    刚度比 1.5
    半径乘子λ 1.0
    下载: 导出CSV

    表  2  模型细观参数标定结果与试验结果对比

    Table  2.   Micro mechanical parameters comparison of calibration results and test results

    研究对象 水合物含量表征 强度范围/MPa 初始模量范围/MPa 参考文献
    试验结果 黏土质粉砂(黏土33%,粉砂67%) 水合物饱和度0~60.0% 5.0~10.0 300~400 张怀文等(2017)
    黏土质粉砂(黏土31%,粉砂和砂土69%) 水合物饱和度0~25.7% 1.6~3.2 50~150 Wang et al.(2019)
    黏土质粉砂(黏土36%,粉砂和砂土64%) 水合物质量含量4.1%~16.7% 0.5~3.5 100~400 李彦龙等(2020)
    标定结果 黏土质粉砂(黏土20%,粉砂和砂土80%) 黏结半径乘子0~1.0 1.8~6.8 325~855
    下载: 导出CSV

    表  3  4种研究方案设计

    Table  3.   Four scenarios with different mineral grain characteristics and confining pressure

    方案 黏土矿物含量 黏土颗粒长短轴比Se 黏土颗粒倾角β 颗粒黏结半径乘子λ 围压/MPa
    方案1 0、10%、20%、30%、40%、50% 1 随机 0 1
    方案2 20% 1.0、1.5、2.0、2.5、3.0、3.5 随机 0 1
    方案3 20% 3.0 0°、30°、60°、90° 0 1
    方案4 20% 1 随机 0、0.2、0.4、0.6、0.8、1.0 1、2、5
    下载: 导出CSV
  • Birchwood R,Dai J C,Shelander D,et al. 2010. Developments in gas hydrates[J]. Oilfield Review,22 (1): 18-33. http://www.researchgate.net/publication/289603995_Developments_in_gas_hydrates
    Cundall P A. 1971. A computer model for simulating progressive large scale ale movements in blocky system[C]//Proceedings of Symposium on Rock Fracture: 8-12.
    Chong Z R, Yang S H B, Babu P, et al. 2016. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 162 : 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
    Cheng S, Shan H X, Zhu C Q, et al. 2018. The research and application of particle discrete element modelling in rock and soil mesoscopic characteristics and slope deformation[J]. Journal of Engineering Geology, 26 (S1): 547-553.
    Fan S S, Liang D Q, Chen Y. 2003. Development situation and preview of natural gas hydrate resource[J]. Modern Chemical Industry, 23 (9): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDHG200309001.htm
    Hyodo M, Nakata Y, Yoshimoto N, et al. 2005. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 45 (1): 75-85. http://www.researchgate.net/publication/279937652_Basic_research_on_the_mechanical_behavior_of_methane_hydrate-sediments_mixture
    Han Z H, Zhang L Q, Zhou J. 2019. Numerical investigation of mineral grain shape effects on strength and fracture behaviors of rock material[J]. Applied Sciences, 9(14): 2855. doi: 10.3390/app9142855
    Han Z H, Zhang L Q, Zhou J. 2019. Effect of mineral particle size heterogeneity on mechanical properties in PFC2D simulation[J]. Journal of Engineering Geology, 27 (4): 706-716. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201904002.htm
    Jung J W, Santamarina J C, Soga K. 2012. Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04202. doi: 10.1029/2011JB009040
    Jiang M J, He J, Shen Z F. 2014. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 36 (4): 736-744. http://www.researchgate.net/profile/Mingjing_Jiang/publication/286377749_Preliminary_investigation_on_parameter_inversion_for_three-dimensional_distinct_element_modeling_of_methane_hydrate/links/56812d4908aebccc4e0bbe7b.pdf
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Li L D, Cheng Y F, Sun X, et al. 2012. Experimental sample preparation and mechanical properties study of hydrate bearing sediments[J]. Journal of China University of Petroleum, 36 (4): 97-101. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201204020.htm
    Li Y H, Song Y C, Liu W G, et al. 2012. Effects of temperature and strain rate on strength of hydrate sediments[J]. Natural Gas Exploration & Development, 35 (1): 50-53. http://www.cnki.com.cn/Article/CJFDTotal-TRKT201201012.htm
    Li Y L, Liu C L, Liao H L, et al. 2020. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates[J]. Natural Gas Industry, 40 (8): 159-168.
    Liu C L, Meng G Q, Li C F, et al. 2017. Characterization of natural gas hydrate and its deposits recovered from the northern slope of the South China Sea[J]. Earth Science Frontiers, 24 (4): 41-50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201704008.htm
    Masui A, Haneda H, Ogata Y, et al. 2005. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers.
    Miyazaki K, Tenma N, Yamaguchi T, et al. 2017. Relationship between creep property and loading-rate dependence of strength of artificial methane-hydrate-bearing Toyoura Sand under triaxial compression[J]. Energies, 10(10): 1466. doi: 10.3390/en10101466
    Shi Y H, Zhang X H, Lu X B, et al. 2015. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 47 (3): 521-528. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB201503016.htm
    Shi D D, Zhou J, Liu W B, et al. 2008. Numerical simulation for behaviors of sand with non-circular particles under monotonic shear loading[J]. Chinese Journal of Geotechnical Engineering, 30 (9): 1361-1366. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200809020.htm
    Wang L, Li Y, Shen S, et al. 2019. Mechanical behaviors of gas hydrate-bearing clayey sediments of the South China Sea[J]. Journal of Environmental Geotechnics, 1-10.
    Wang L, Li Y, Shen S, et al. 2020. Undrained triaxial tests on water-saturated methane hydrate-bearing clayey-silty sediments of the South China Sea[J]. Canadian Geotechnical Journal, 58 (3): 351-366. doi: 10.1139/cgj-2019-0711
    Wang S Y, Wang L, Lu X B. 2007. Effects of gas hydrate dissociation on stability of pipe in the sea bed[J]. Journal of Engineering Geology, 15 (S1): 428-432. http://www.gcdz.org/EN/abstract/abstract10966.shtml
    Wang S Y, Luo D S, Zhang X H, et al. 2018. Experimental study of mechanical properties of hydrated clay[J]. Journal of Experimental Mechanics, 33 (2): 245-252.
    Wu N Y, Huang L, Hu G W, et al. 2017. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation[J]. Marine Geology & Quaternary Geology, 37 (5): 1-11. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201705001.htm
    Yun T S, Santamarina J C, Ruppel C. 2017. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research, 112(B4): B04106. doi: 10.1029/2006JB004484/full
    Yu Y X, Cheng Y P, Xu X M, et al. 2016. Discrete element modelling of methane hydrate soil sediments using elongated soil particles[J]. Computers and Geotechnics, 80 : 397-409. doi: 10.1016/j.compgeo.2016.03.004
    Yan R T, Wei C F, Fu X H, et al. 2013. Influence of occurrence mode of hydrate on mechanical behaviour of hydrate-bearing soils[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (S2): 4115-4122.
    Zhang H, Lu H L, Liang J Q, et al. 2016. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea[J]. Chinese Science Bulletin, 61 (3): 388-397. doi: 10.1360/N972014-01395
    Zhang H W, Cheng Y F, Li M L, et al. 2017. Test on rock mechanics and establishment of strength criterion for gas hydrate reservoirs in the northern shallow sediments of South China Sea[J]. China Offshore Oil and Gas, 29 (6): 115-121. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201706015.htm
    Zhao Z, Zhang P, Song J, et al. 2019. Discrete element analysis of the effect of particle morphology on the shear strength of soft clay under low confining pressure[J]. Journal of Engineering Geology, 27 (5): 1085-1092. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905019.htm
    程升, 单红仙, 朱超祁, 等. 2018. 颗粒离散元在岩土体细观特性及边坡变形中的研究应用[J]. 工程地质学报, 26 (S1): 547-553. doi: 10.13544/j.cnki.jeg.2018083
    樊拴狮, 梁德青, 陈勇. 2003. 天然气水合物资源开发现状及前景[J]. 现代化工, 23 (9): 1-5.
    蒋明镜, 贺洁, 申志福. 2014. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 36 (4): 736-744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm
    韩振华, 张路青, 周剑. 2019. 基于PFC2D模拟的矿物粒径非均质效应研究[J]. 工程地质学报, 27 (4): 706-716. doi: 10.13544/j.cnki.jeg.2017-148
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    李令东, 程远方, 孙晓, 等. 2012. 水合物的沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 36 (4): 97-101. doi: 10.3969/j.issn.1673-5005.2012.04.018
    李洋辉, 宋永臣, 刘卫国, 等. 2012. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 35 (1): 50-53. doi: 10.3969/j.issn.1673-3177.2012.01.011
    李彦龙, 刘昌岭, 廖华林, 等. 2020. 泥质粉砂沉积物-天然气水合物混合体系的力学特性[J]. 天然气工业, 40 (8): 159-168. doi: 10.3787/j.issn.1000-0976.2020.08.013
    刘昌岭, 孟庆国, 李承峰, 等. 2017. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 24 (4): 41-50.
    石要红, 张旭辉, 鲁晓兵, 等. 2015. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 47 (3): 521-528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
    史旦达, 周健, 刘文白, 等. 2008. 砂土单调剪切特性的非圆颗粒模拟[J]. 岩土工程学报, 30 (9): 1361-1366. doi: 10.3321/j.issn:1000-4548.2008.09.017
    吴能友, 黄丽, 胡高伟, 等. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 37 (5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705001.htm
    王淑云, 王丽, 鲁晓兵. 2007. 天然气水合物分解对海床中管道稳定性的影响[J]. 工程地质学报, 15 (S1): 428-432. http://www.gcdz.org/article/id/10966
    王淑云, 罗大双, 张旭辉, 等. 2018. 含水合物黏土的力学性质试验研究[J]. 实验力学, 33 (2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802010.htm
    颜荣涛, 韦昌富, 傅鑫晖, 等. 2013. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 32 (S2): 4115-4122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2139.htm
    张辉, 卢海龙, 梁金强, 等. 2016. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 61 (3): 388-397. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201603014.htm
    张怀文, 程远方, 李梦来, 等. 2017. 南海北部深水浅层天然气水合物储层力学特性试验及强度准则建立[J]. 中国海上油气, 29 (6): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201706015.htm
    赵洲, 张鹏, 宋晶, 等. 2019. 低围压下颗粒形态对软黏土抗剪强度影响的离散元分析[J]. 工程地质学报, 27 (5): 1085-1092. doi: 10.13544/j.cnki.jeg.2019109
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  29
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-04-02
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回