THREE-DIMENSIONAL (3D) SURFACE DISPLACEMENT IN BEIJING PLAIN BASED ON TIME SERIES INSAR AND GPS TECHNOLOGIES
-
摘要: 文中采用InSAR与GPS技术相结合,获取了北京平原区时序地表三维形变场信息,分析了其分布特征与演化规律。研究表明:(1)北京平原区在抽水引发的第四系附加应力场作用下,地表呈现出显著的三维变形特征,以垂向变形为主,并辅以水平向位移。(2)平原区地面沉降主要集中在东部、北部和南部等地,存在多个沉降中心,总体呈减缓的趋势。其中:东部的朝阳区和通州部分地区是地面沉降发育最为严重的地区,多年沉降速率均超过100 mm·a-1,最大沉降速率143.20 mm·a-1,最大累计沉降量816.77 mm,且连片发展,不均匀沉降现象明显。(3)在ITRF2005参考框架下,平原区GPS点水平走向基本一致,以SE方向运动为主,优势运动方向NE112.5°~NE113.8°。其中:E向运动速率27.12~36.19 mm·a-1,平均值30.78 mm·a-1;N向运动速率-10.90~-19.73 mm·a-1,平均值-13.57 mm·a-1。反映出整个平原区具有统一的大陆动力学环境下连续变形特征。(4)在欧亚参考框架下,GPS点水平运动速率明显减小,各点之间非一致性变化较为明显,不具备整体趋势性活动特征。特别是几大活动断裂交接部位的地面沉降严重区,往往也是GPS点水平运动速率较大的地区。GPS点水平运动方向总体指向地面沉降或地下水位降落漏斗中心,或由高水位指向低水位地区。这主要是抽取地下水导致第四系含水层系统在水平向产生的变形分量引起的。Abstract: This paper uses the time series InSAR and GPS technologies to obtain the three-dimensional surface deformation in Beijing Plain. It analyze its spatial distribution and evolution characteristics. The results show the following findings. (1)Under the Quaternary additional stress field caused by pumping,the three-dimensional surface deformation characteristics are significant in Beijing Plain. The vertical deformation is the main component and horizontal displacement is a supplement. (2)Land subsidence are mainly located in the east,north and south part of Beijing plain. There are multiple subsidence centers,and the overall trend is slowing down. The most serious subsidence areas are distributed in east part of Chaoyang District and parts of Tongzhou District. The subsidence rate has exceeded 100 mm·a-1 for many years. The maximum subsidence rate is 143.20 mm·a-1,the maximum accumulated subsidence is 816.77 mm,and the uneven subsidence is obvious. (3)Under the ITRF2005 reference frame,the horizontal direction of GPS points in the plain are consistent,mainly in the SE direction. The dominant movement direction is NE112.5°~NE113.8°. The movement rate of E direction is 27.12~36.19 mm·a-1,and the average rate is 30.78 mm·a-1. The movement rate of N direction is -10.90~-19.73 mm·a-1,and the average rate is -13.57 mm·a-1. They reflect that the continuous deformation in Beijing plain is under the situation of a unified continental dynamic environment. (4)Under the Eurasian reference frame,the horizontal movement rate of GPS points are significantly reduced. The deformation between GPS points is varies with no consistent change trend. In particular,in joint area of several major active faults,where both of the InSAR derived vertical subsidence rate and the GPS horizontal movement rate are large. The horizontal movement direction of the GPS points generally direct to the center of subsidence or the funnel of the groundwater level,or from the high water level to the low water level area. This is mainly caused by the horizontal deformation of the Quaternary aquifer system caused by the extraction of groundwater.
-
Key words:
- InSAR /
- GPS /
- Land subsidence /
- Horizontal deformation /
- Three-dimensional surface deformation
-
图 2 A—A1处水文地质剖面
Figure 2. Hydrogeological cross-section A-A1(the location is indicated in Fig. 1)
表 1 InSAR、GPS垂向形变量与水准测量结果对比
Table 1. Comparison of InSAR,GPS vertical deformation with leveling results
监测点 年沉降量/mm 监测点 年沉降量/mm InSAR GPS 水准 InSAR-水准 GPS-水准 InSAR GPS 水准 InSAR-水准 GPS-水准 BJ001 -42.50 -46.20 -38.40 -4.10 -7.80 BJ021 -25.60 -33.60 -18.30 -7.30 -15.30 BJ002 -38.00 -40.00 -32.00 -6.00 -8.00 BJ022 -18.30 -22.90 -15.20 -3.10 -7.70 BJ003 -39.20 -43.40 -42.90 3.70 -0.50 BJ023 2.20 -10.80 -1.10 3.30 -9.70 BJ004 -18.00 -30.00 -21.00 3.00 -9.00 BJ024 -45.00 -40.20 -52.20 7.20 12.00 BJ005 -19.80 -30.20 -25.20 5.40 -5.00 BJ025 2.10 -6.60 -1.60 3.70 -5.00 BJ006 -32.20 -25.10 -37.80 5.60 12.70 BJ026 -32.50 -40.30 -25.10 -7.40 -15.20 BJ007 -40.10 -54.20 -46.70 6.60 -7.50 BJ027 -5.40 -19.30 -9.70 4.30 -9.60 BJ008 -15.30 -19.10 -18.30 3.00 -0.80 BJ028 -24.00 -32.40 -20.00 -4.00 -12.40 BJ009 -10.20 -15.90 -6.00 -4.20 -9.90 BJ029 -29.00 -20.10 -31.40 2.40 11.30 BJ010 3.50 -1.70 -4.80 8.30 3.10 BJ030 -135.30 -124.20 -129.20 -6.10 5.00 BJ011 -134.00 -115.80 -126.90 -7.10 11.10 BJ031 -6.00 -4.00 -3.90 -2.10 -0.10 BJ012 -26.00 -37.30 -34.00 8.00 -3.30 BJ032 -16.90 -5.80 -11.50 -5.40 5.70 BJ013 -5.80 -4.90 -11.60 5.80 6.70 BJ033 2.10 -1.90 -2.90 5.00 1.00 BJ014 -19.80 -32.10 -16.30 -3.50 -15.80 BJ034 -36.20 -28.20 -33.90 -2.30 5.70 BJ015 -28.90 -35.20 -33.20 4.30 -2.00 BJ035 -33.00 -35.10 -33.10 0.10 -2.00 BJ016 -6.90 -19.20 -10.20 3.30 -9.00 BJ036 -30.00 -33.30 -32.90 2.90 -0.40 BJ017 -26.00 -35.70 -27.50 1.50 -8.20 BJ037 -12.50 -11.50 -15.10 2.60 3.60 BJ018 -6.20 -9.30 -3.50 -2.70 -5.80 BJ038 -119.40 -118.10 -118.40 -1.00 0.30 BJ019 -18.50 -12.00 -16.20 -2.30 4.20 BJ039 -57.60 -64.70 -60.50 2.90 -4.20 BJ020 -36.40 -23.60 -31.00 -5.40 7.40 BJ040 -8.30 -5.20 -9.50 1.20 4.30 表 2 ITRF2005框架下GPS观测点水平运动速率及精度
Table 2. The horizontal movement rate and accuracy of GPS points under the ITRF2005 framework
GPS点 水平速度分量/mm·a-1 速度分量精度/mm·a-1 GPS点 水平速度分量/mm·a-1 速度分量精度/mm·a-1 VE VN ΔE ΔN VE VN ΔE ΔN BJ001 28.82 -14.67 3.70 4.30 BJ024 30.36 -18.86 4.00 3.50 BJ002 32.62 -16.74 4.30 3.90 BJ025 29.10 -15.33 4.30 2.10 BJ003 28.29 -10.72 2.80 3.80 BJ026 31.51 -12.90 4.30 2.80 BJ004 28.69 -15.06 3.90 4.30 BJ027 34.60 -16.94 2.90 3.70 BJ005 27.59 -11.27 2.40 4.70 BJ028 27.69 -15.77 3.70 5.00 BJ006 27.29 -11.89 2.40 4.20 BJ029 32.73 -18.99 1.60 3.60 BJ007 29.48 -12.29 4.00 3.10 BJ030 30.76 -13.90 4.70 3.20 BJ008 28.40 -16.16 3.20 4.70 BJ031 34.41 -19.22 3.80 2.50 BJ009 30.92 -11.44 4.80 3.40 BJ032 32.53 -16.18 4.90 3.70 BJ010 31.08 -17.75 2.20 2.90 BJ033 31.57 -12.80 3.80 4.50 BJ011 31.76 -11.58 2.30 3.80 BJ034 34.99 -16.64 4.30 3.60 BJ012 33.22 -10.90 4.60 2.30 BJ035 33.87 -12.51 4.90 3.80 BJ013 32.65 -13.54 3.90 4.20 BJ036 31.53 -11.90 4.40 2.80 BJ014 28.19 -15.46 3.90 2.20 BJ037 31.12 -16.98 4.40 3.90 BJ015 28.14 -18.91 4.70 2.30 BJ038 33.85 -12.27 4.80 2.40 BJ016 32.39 -16.05 4.40 3.20 BJ039 28.82 -15.34 3.20 4.40 BJ017 29.20 -11.65 4.90 4.30 BJ040 32.83 -16.66 2.70 3.60 BJ018 28.36 -15.52 4.80 4.60 ZJWZ 28.58 -16.19 0.07 0.09 BJ019 28.94 -12.81 2.90 4.60 NLSH 27.80 -12.78 0.06 0.08 BJ020 32.36 -14.65 4.60 2.60 CHAO 28.92 -18.57 0.08 0.10 BJ021 32.63 -15.41 3.90 4.30 DSQI 34.12 -17.77 0.07 0.09 BJ022 31.40 -13.40 3.70 4.00 YUFA 27.32 -12.05 0.07 0.09 BJ023 29.59 -18.49 2.80 4.90 CHPN 30.10 -11.25 0.07 0.09 -
Burbey T J, Warner S M, Blewitt G, et al. 2006. Three-dimensional deformation and strain induced by municipal pumping, part 1: analysis of field data[J]. Journal of Hydrology, 319(1-4): 123-142. doi: 10.1016/j.jhydrol.2005.06.028 Burbey T J. 1999. Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems[J]. Hydrogeology Journal, 7(6): 521-532. doi: 10.1007/s100400050225 Chen B B, Gong H L, Lei K C, et al. 2019. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China[J]. International Journal of Applied Earth Observation & Geoinformation, 75 : 54-67. doi: 10.1016/j.jag.2018.09.003 Chen Q, Liu G X, Hu Z Q, et al. 2012. Mapping ground 3-D displacement with GPS and PS-InSAR networking in the Pingtung area, southwestern Taiwan, China[J]. Chinese Journal of Geophysics, 55(10): 3248-3258. http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract8963.shtml Ferretti A, Prati C, Rocca F L. 2001. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remot Sen[J]. IEEE Transactions on Geoscience & Remote Sensing, 39(1): 8-20. doi: 10.1109/36.898661 Galloway D L, Hudnut K W, Ingebritsen S E, et al. 1998. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 34(10): 2573-2585. doi: 10.1029/98WR01285 Gong H L, Pan Y, Zheng L Q, et al. 2018. Long-term groundwater storage changes and land subsidence development in the North China Plain(1971-2015)[J]. Hydrogeology Journal, 26 : 1417-1427. doi: 10.1007/s10040-018-1768-4 Guo H P, Bai J B, Zhang Y Q, et al. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 44(6): 1115-1127. doi: 10.12029/gc20170606 Helm D C. 1994. Horizontal aquifer movement in a Theis-Thiem confined system[J]. Water Resources Research, 30(4): 953-964. doi: 10.1029/94WR00030 Hooper A. 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 35(16): 96-106. doi: 10.1029/2008GL034654 Hu J C, Chu H T, Hou C S, et al. 2006. The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements[J]. Quaternary International, 147(1): 62-69. doi: 10.1016/j.quaint.2005.09.007 Jia S M, Wang H G, Zhao S S, et al. 2007. A tentative study of the mechanism of land subsidence in Beijing[J]. City Geology, 2(1): 20-26. https://en.cnki.com.cn/Article_en/CJFDTOTAL-CSDZ200701005.htm Lei K C, Chen B B, Jia S M, et al. 2014. Primary investigation of formation and genetic mechanism of land subsidence based on PS-InSAR technology in Beijing[J]. Spectroscopy and Spectral Analysis, 34(8): 2185-2189. https://pubmed.ncbi.nlm.nih.gov/25474959/ Lei K C, Luo Y, Chen B B, et al. 2016. Distribution characteristics and influence factors of land subsidence in Beijing area[J]. Geology in China, 43(6): 2216-2225. doi: 10.12029/gc20160628 Lei K C, Luo Y, Liu H, et al. 2019. Land subsidence monitoring report of Beijing in 2019[R]. Beijing: Beijing Institute of Hydrogeology and Engineering Geology(Beijing Institute of Geo-Environment Monitoring). Li M, Ge D Q, Zhang L, et al. 2016. Land subsidence of coastal area in southern Tangshan using PSinSAR technique[J]. Journal of Engineering Geology, 24(4): 704-712. doi: 10.13544/j.cnki.jeg.2016.04.028 Luo Y, Ye S J, Wu J C. 2018. Numerical model for simulating 3D regional land subsidence[J]. Rock and Soil Mechanics, 39(3): 1063-1070. doi: 10.16285/j.rsm.2016.0599 Wang C X, Gu T F, Zhang M S, et al. 2018. The analysis of three-dimensional(3D)ground surface deformations in Heifangtai platform[J]. Journal of Engineering Geology, 26(6): 1735-1742. doi: 10.13544/j.cnki.jeg.2018-129 Wang Q L, Liu Y H, Chen Z X, et al. 2002. Horizontal strain of aquifer induced by groundwater pumping—A new mechanism for ground fissure movement[J]. Journal of Engineering Geology, 10(1): 46-50. http://www.gcdz.org/en/article/id/9417 Wang Q L, Wang W P, Liang W F, et al. 1997. Horizontal aquifer movement induced by groundwater pumping and its applications to the analysis of some geological disasters[J]. Acta Seismologica Sinica, 10(4): 535-543. doi: 10.1007/s11589-997-0063-6 Yang J T, Jiang Y X, Zhou J, et al. 2006. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics, 26(1): 70-75. Zhang J, Feng X D, Qi W, et al. 2018. Monitoring land subsidence in Panjin region with SBAS-InSAR method[J]. Journal of Engineering Geology, 26(4): 999-1007. doi: 10.13544/j.cnki.jeg.2017-382 Zhang Q, Zhao C Y, Ding X L, et al. 2009. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 52(5): 1214-1222. http://manu39.magtech.com.cn/Geophy/EN/Y2009/V52/I5/1214 Zhang Y H, Wu H A, Kang Y H. 2016. Ground subsidence over Beijing-Tianjin-Hebei Region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 45(9): 1050-1058. doi: 10.11947/j.AGCS.2016.20160072 Zhao X K, Zhang J, Lei Q K, et al. 2019. Analysis of the current tectonic movement deformation characteristics in the Bohai rim region and adjacent areas[J]. Journal of Geodesy and Geodynamics, 39(11): 1101-1105. Zhou C F, Gong H L, Chen B B, et al. 2017. Study of temporal and spatial characteristics of land subsidence in Beijing[J]. Journal of Geo-Information Science, 19(2): 205-215. doi: 10.3724/SP.J.1047.2017.00205 Zhou Y, Luo Y, Guo G X, et al. 2016. A study of the characteristics of land subsidence and the main control factors in the alluvial plain: A case study of Beijing plain[J]. Geological Bulletin of China, 35(12): 2100-2110. https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201612019.htm 陈强, 刘国祥, 胡植庆, 等. 2012. GPS与PS-InSAR联网监测的台湾屏东地区三维地表形变场[J]. 地球物理学报, 55(10): 3248-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210008.htm 郭海朋, 白晋斌, 张有全, 等. 2017. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质, 44(6): 1115-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706008.htm 贾三满, 王海刚, 赵守生, 等. 2007. 北京地面沉降机理研究初探[J]. 城市地质, 2(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ200701005.htm 雷坤超, 陈蓓蓓, 贾三满, 等. 2014. 基于PS-InSAR技术的北京地面沉降特征及成因初探[J]. 光谱学与光谱分析, 34(8): 2185-2189. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201408039.htm 雷坤超, 罗勇, 陈蓓蓓, 等. 2016. 北京平原区地面沉降分布特征及影响因素[J]. 中国地质, 43(6): 2216-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606029.htm 雷坤超, 罗勇, 刘贺, 等. 2019. 北京市地面沉降监测年度报告(2019年)[R]. 北京: 北京市水文地质工程地质大队(北京市地质环境监测总站). 李曼, 葛大庆, 张玲, 等. 2016. 基于PSinSAR技术的唐山南部沿海地区地面沉降研究[J]. 工程地质学报, 24(4): 704-712. doi: 10.13544/j.cnki.jeg.2016.04.028 罗跃, 叶淑君, 吴吉春. 2018. 三维区域地面沉降数值模拟[J]. 岩土力学, 39(3): 1063-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803036.htm 王晨兴, 谷天峰, 张茂省, 等. 2018. 黑方台地表三维形变分析[J]. 工程地质学报, 26(6): 1735-1742. doi: 10.13544/j.cnki.jeg.2018-129 王庆良, 刘玉海, 陈志新, 等. 2002. 抽水引起的含水层水平应变─地裂缝活动新机理[J]. 工程地质学报, 10(1): 46-50. http://www.gcdz.org/article/id/9417 王庆良, 王文萍, 梁伟锋, 等. 1997. 抽水引起的含水层水平运动及其在地质灾害分析中的应用[J]. 地震学报, 19(4): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB704.012.htm 杨建图, 姜衍祥, 周俊, 等. 2006. GPS测量地面沉降的可靠性及精度分析[J]. 大地测量与地球动力学, 26(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200601011.htm 张静, 冯东向, 綦巍, 等. 2018. 基于SBAS-InSAR技术的盘锦地区地面沉降监测[J]. 工程地质学报, 26(4): 999-1007. doi: 10.13544/j.cnki.jeg.2017-382 张勤, 赵超英, 丁晓利, 等. 2009. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报, 52(5): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200905011.htm 张永红, 吴宏安, 康永辉. 2016. 京津冀地区1992~2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 45(9): 1050-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201609008.htm 赵旭坤, 张俊, 雷前坤, 等. 2019. 环渤海区域及邻区现今地壳构造运动形变特征分析[J]. 大地测量与地球动力学, 39(11): 1101-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201911001.htm 周超凡, 宫辉力, 陈蓓蓓, 等. 2017. 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 19(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201702009.htm 周毅, 罗郧, 郭高轩, 等. 2016. 冲洪积平原地面沉降特征及主控因素——以北京平原为例[J]. 地质通报, 35(12): 2100-2110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201612019.htm -