基于时序InSAR和GPS技术的北京平原区地表三维形变场特征

雷坤超 马凤山 陈蓓蓓 罗勇 崔文君 刘贺 田芳

雷坤超, 马凤山, 陈蓓蓓, 等. 2022. 基于时序InSAR和GPS技术的北京平原区地表三维形变场特征[J]. 工程地质学报, 30(2): 417-431. doi: 10.13544/j.cnki.jeg.2021-0077
引用本文: 雷坤超, 马凤山, 陈蓓蓓, 等. 2022. 基于时序InSAR和GPS技术的北京平原区地表三维形变场特征[J]. 工程地质学报, 30(2): 417-431. doi: 10.13544/j.cnki.jeg.2021-0077
Lei Kunchao, Ma Fengshan, Chen Beibei, et al. 2022. Three-Dimensional (3D) surface displacement in Beijing Plain based on time series InSAR and GPS technologies[J]. Journal of Engineering Geology, 30(2): 417-431. doi: 10.13544/j.cnki.jeg.2021-0077
Citation: Lei Kunchao, Ma Fengshan, Chen Beibei, et al. 2022. Three-Dimensional (3D) surface displacement in Beijing Plain based on time series InSAR and GPS technologies[J]. Journal of Engineering Geology, 30(2): 417-431. doi: 10.13544/j.cnki.jeg.2021-0077

基于时序InSAR和GPS技术的北京平原区地表三维形变场特征

doi: 10.13544/j.cnki.jeg.2021-0077
基金项目: 

北京市自然科学基金 8212042

国家自然科学基金 41831293

国家自然科学基金 41771455

北京卓越青年科学家项目 BJJWZYJH01201910028032

北京市优秀人才培养青年拔尖个人资助项目

详细信息
    作者简介:

    雷坤超(1986-),男,博士生,高级工程师,主要从事地面沉降、地裂缝监测及机理研究工作. E-mail: leikunchao123@126.com

    通讯作者:

    马凤山(1964-),男,研究员,博士生导师,主要从事地质工程与地质灾害研究工作. E-mail: fsma@mail.iggcas.ac.cn

  • 中图分类号: P227

THREE-DIMENSIONAL (3D) SURFACE DISPLACEMENT IN BEIJING PLAIN BASED ON TIME SERIES INSAR AND GPS TECHNOLOGIES

Funds: 

the Beijing Natural Science Foundation 8212042

National Natural Science Foundation of China 41831293

National Natural Science Foundation of China 41771455

Beijing Outstanding Young Scientist Program BJJWZYJH01201910028032

Beijing Youth Top Talent Project

  • 摘要: 文中采用InSAR与GPS技术相结合,获取了北京平原区时序地表三维形变场信息,分析了其分布特征与演化规律。研究表明:(1)北京平原区在抽水引发的第四系附加应力场作用下,地表呈现出显著的三维变形特征,以垂向变形为主,并辅以水平向位移。(2)平原区地面沉降主要集中在东部、北部和南部等地,存在多个沉降中心,总体呈减缓的趋势。其中:东部的朝阳区和通州部分地区是地面沉降发育最为严重的地区,多年沉降速率均超过100 mm·a-1,最大沉降速率143.20 mm·a-1,最大累计沉降量816.77 mm,且连片发展,不均匀沉降现象明显。(3)在ITRF2005参考框架下,平原区GPS点水平走向基本一致,以SE方向运动为主,优势运动方向NE112.5°~NE113.8°。其中:E向运动速率27.12~36.19 mm·a-1,平均值30.78 mm·a-1;N向运动速率-10.90~-19.73 mm·a-1,平均值-13.57 mm·a-1。反映出整个平原区具有统一的大陆动力学环境下连续变形特征。(4)在欧亚参考框架下,GPS点水平运动速率明显减小,各点之间非一致性变化较为明显,不具备整体趋势性活动特征。特别是几大活动断裂交接部位的地面沉降严重区,往往也是GPS点水平运动速率较大的地区。GPS点水平运动方向总体指向地面沉降或地下水位降落漏斗中心,或由高水位指向低水位地区。这主要是抽取地下水导致第四系含水层系统在水平向产生的变形分量引起的。
  • 图  1  研究区位置和地质条件概况

    Figure  1.  The location and geological conditions of the study area

    图  2  A—A1处水文地质剖面

    Figure  2.  Hydrogeological cross-section A-A1(the location is indicated in Fig. 1)

    图  3  利用InSAR和GPS技术获取北京平原区2013~2018年地表垂向形变特征

    a. 2013年;b. 2014年;c. 2015年;d. 2016年;e. 2017年;f. 2018年

    Figure  3.  InSAR and GPS technology were used to obtain the vertical deformation characteristics of the Beijing Plain from 2013 to 2018

    图  4  北京平原区2013~2018年平均沉降速率、沉降区面积和体积统计

    a. 2013~2018年平均沉降速率和沉降区面积统计;b. 2013~2018年地面沉降体积统计

    Figure  4.  Statistics on the average subsidence rate,area and volume of subsidence areas in Beijing Plain from 2013 to 2018

    图  5  2013~2018年主要沉降中心地面沉降速率变化特征

    a. 2013年,b. 2014年,c. 2015年,d. 2016年,e. 2017年,f. 2018年;P1. 朝阳金盏,P2. 朝阳黑庄户;P3. 朝阳三间房;P4. 通州城区;P5. 昌平八仙庄;P6. 海淀上庄

    Figure  5.  Characteristics of land subsidence rate of major subsidence centers from 2013 to 2018

    图  6  2013年东部4个沉降中心剖面和2013~2018年平原区沉降中心速率统计

    a. 2013年平原区东部4个沉降中心剖面;b. 2013~2018年平原区沉降中心速率统计

    Figure  6.  Statistics of subsidence center sections in the east in 2013 and the subsidence center rate statistics of the plain area from 2013 to 2018

    图  7  2013~2018年InSAR、GPS和水准测量获取的累计沉降量对比图

    Figure  7.  Comparison chart of accumulated settlement obtained by InSAR,GPS and leveling from 2013 to 2018

    图  8  利用水准测量结果对InSAR和GPS垂向形变量进行精度检验

    Figure  8.  Use leveling results to verify the accuracy of InSAR and GPS vertical deformation

    图  9  ITRF2005参考框架下北京平原区GPS点水平速度场

    a. 2013~2015年;b. 2016年;c. 2017年;d. 2018年

    Figure  9.  Horizontal velocity field of GPS in Beijing plain under ITRF2005

    图  10  欧亚参考框架下北京平原区内部GPS点水平速度场

    a. 2013~2015年;b. 2016年;c. 2017年;d. 2018年

    Figure  10.  Horizontal velocity field of GPS in Beijing Plain under Eurasian reference framework

    图  11  地下水位漏斗与地表三维形变响应关系

    Figure  11.  The relationship between groundwater level funnel and three-dimensional deformation of the ground surface

    表  1  InSAR、GPS垂向形变量与水准测量结果对比

    Table  1.   Comparison of InSAR,GPS vertical deformation with leveling results

    监测点 年沉降量/mm 监测点 年沉降量/mm
    InSAR GPS 水准 InSAR-水准 GPS-水准 InSAR GPS 水准 InSAR-水准 GPS-水准
    BJ001 -42.50 -46.20 -38.40 -4.10 -7.80 BJ021 -25.60 -33.60 -18.30 -7.30 -15.30
    BJ002 -38.00 -40.00 -32.00 -6.00 -8.00 BJ022 -18.30 -22.90 -15.20 -3.10 -7.70
    BJ003 -39.20 -43.40 -42.90 3.70 -0.50 BJ023 2.20 -10.80 -1.10 3.30 -9.70
    BJ004 -18.00 -30.00 -21.00 3.00 -9.00 BJ024 -45.00 -40.20 -52.20 7.20 12.00
    BJ005 -19.80 -30.20 -25.20 5.40 -5.00 BJ025 2.10 -6.60 -1.60 3.70 -5.00
    BJ006 -32.20 -25.10 -37.80 5.60 12.70 BJ026 -32.50 -40.30 -25.10 -7.40 -15.20
    BJ007 -40.10 -54.20 -46.70 6.60 -7.50 BJ027 -5.40 -19.30 -9.70 4.30 -9.60
    BJ008 -15.30 -19.10 -18.30 3.00 -0.80 BJ028 -24.00 -32.40 -20.00 -4.00 -12.40
    BJ009 -10.20 -15.90 -6.00 -4.20 -9.90 BJ029 -29.00 -20.10 -31.40 2.40 11.30
    BJ010 3.50 -1.70 -4.80 8.30 3.10 BJ030 -135.30 -124.20 -129.20 -6.10 5.00
    BJ011 -134.00 -115.80 -126.90 -7.10 11.10 BJ031 -6.00 -4.00 -3.90 -2.10 -0.10
    BJ012 -26.00 -37.30 -34.00 8.00 -3.30 BJ032 -16.90 -5.80 -11.50 -5.40 5.70
    BJ013 -5.80 -4.90 -11.60 5.80 6.70 BJ033 2.10 -1.90 -2.90 5.00 1.00
    BJ014 -19.80 -32.10 -16.30 -3.50 -15.80 BJ034 -36.20 -28.20 -33.90 -2.30 5.70
    BJ015 -28.90 -35.20 -33.20 4.30 -2.00 BJ035 -33.00 -35.10 -33.10 0.10 -2.00
    BJ016 -6.90 -19.20 -10.20 3.30 -9.00 BJ036 -30.00 -33.30 -32.90 2.90 -0.40
    BJ017 -26.00 -35.70 -27.50 1.50 -8.20 BJ037 -12.50 -11.50 -15.10 2.60 3.60
    BJ018 -6.20 -9.30 -3.50 -2.70 -5.80 BJ038 -119.40 -118.10 -118.40 -1.00 0.30
    BJ019 -18.50 -12.00 -16.20 -2.30 4.20 BJ039 -57.60 -64.70 -60.50 2.90 -4.20
    BJ020 -36.40 -23.60 -31.00 -5.40 7.40 BJ040 -8.30 -5.20 -9.50 1.20 4.30
    下载: 导出CSV

    表  2  ITRF2005框架下GPS观测点水平运动速率及精度

    Table  2.   The horizontal movement rate and accuracy of GPS points under the ITRF2005 framework

    GPS点 水平速度分量/mm·a-1 速度分量精度/mm·a-1 GPS点 水平速度分量/mm·a-1 速度分量精度/mm·a-1
    VE VN ΔE ΔN VE VN ΔE ΔN
    BJ001 28.82 -14.67 3.70 4.30 BJ024 30.36 -18.86 4.00 3.50
    BJ002 32.62 -16.74 4.30 3.90 BJ025 29.10 -15.33 4.30 2.10
    BJ003 28.29 -10.72 2.80 3.80 BJ026 31.51 -12.90 4.30 2.80
    BJ004 28.69 -15.06 3.90 4.30 BJ027 34.60 -16.94 2.90 3.70
    BJ005 27.59 -11.27 2.40 4.70 BJ028 27.69 -15.77 3.70 5.00
    BJ006 27.29 -11.89 2.40 4.20 BJ029 32.73 -18.99 1.60 3.60
    BJ007 29.48 -12.29 4.00 3.10 BJ030 30.76 -13.90 4.70 3.20
    BJ008 28.40 -16.16 3.20 4.70 BJ031 34.41 -19.22 3.80 2.50
    BJ009 30.92 -11.44 4.80 3.40 BJ032 32.53 -16.18 4.90 3.70
    BJ010 31.08 -17.75 2.20 2.90 BJ033 31.57 -12.80 3.80 4.50
    BJ011 31.76 -11.58 2.30 3.80 BJ034 34.99 -16.64 4.30 3.60
    BJ012 33.22 -10.90 4.60 2.30 BJ035 33.87 -12.51 4.90 3.80
    BJ013 32.65 -13.54 3.90 4.20 BJ036 31.53 -11.90 4.40 2.80
    BJ014 28.19 -15.46 3.90 2.20 BJ037 31.12 -16.98 4.40 3.90
    BJ015 28.14 -18.91 4.70 2.30 BJ038 33.85 -12.27 4.80 2.40
    BJ016 32.39 -16.05 4.40 3.20 BJ039 28.82 -15.34 3.20 4.40
    BJ017 29.20 -11.65 4.90 4.30 BJ040 32.83 -16.66 2.70 3.60
    BJ018 28.36 -15.52 4.80 4.60 ZJWZ 28.58 -16.19 0.07 0.09
    BJ019 28.94 -12.81 2.90 4.60 NLSH 27.80 -12.78 0.06 0.08
    BJ020 32.36 -14.65 4.60 2.60 CHAO 28.92 -18.57 0.08 0.10
    BJ021 32.63 -15.41 3.90 4.30 DSQI 34.12 -17.77 0.07 0.09
    BJ022 31.40 -13.40 3.70 4.00 YUFA 27.32 -12.05 0.07 0.09
    BJ023 29.59 -18.49 2.80 4.90 CHPN 30.10 -11.25 0.07 0.09
    下载: 导出CSV
  • Burbey T J, Warner S M, Blewitt G, et al. 2006. Three-dimensional deformation and strain induced by municipal pumping, part 1: analysis of field data[J]. Journal of Hydrology, 319(1-4): 123-142. doi: 10.1016/j.jhydrol.2005.06.028
    Burbey T J. 1999. Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems[J]. Hydrogeology Journal, 7(6): 521-532. doi: 10.1007/s100400050225
    Chen B B, Gong H L, Lei K C, et al. 2019. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China[J]. International Journal of Applied Earth Observation & Geoinformation, 75 : 54-67. doi: 10.1016/j.jag.2018.09.003
    Chen Q, Liu G X, Hu Z Q, et al. 2012. Mapping ground 3-D displacement with GPS and PS-InSAR networking in the Pingtung area, southwestern Taiwan, China[J]. Chinese Journal of Geophysics, 55(10): 3248-3258. http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract8963.shtml
    Ferretti A, Prati C, Rocca F L. 2001. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remot Sen[J]. IEEE Transactions on Geoscience & Remote Sensing, 39(1): 8-20. doi: 10.1109/36.898661
    Galloway D L, Hudnut K W, Ingebritsen S E, et al. 1998. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 34(10): 2573-2585. doi: 10.1029/98WR01285
    Gong H L, Pan Y, Zheng L Q, et al. 2018. Long-term groundwater storage changes and land subsidence development in the North China Plain(1971-2015)[J]. Hydrogeology Journal, 26 : 1417-1427. doi: 10.1007/s10040-018-1768-4
    Guo H P, Bai J B, Zhang Y Q, et al. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 44(6): 1115-1127. doi: 10.12029/gc20170606
    Helm D C. 1994. Horizontal aquifer movement in a Theis-Thiem confined system[J]. Water Resources Research, 30(4): 953-964. doi: 10.1029/94WR00030
    Hooper A. 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 35(16): 96-106. doi: 10.1029/2008GL034654
    Hu J C, Chu H T, Hou C S, et al. 2006. The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements[J]. Quaternary International, 147(1): 62-69. doi: 10.1016/j.quaint.2005.09.007
    Jia S M, Wang H G, Zhao S S, et al. 2007. A tentative study of the mechanism of land subsidence in Beijing[J]. City Geology, 2(1): 20-26. https://en.cnki.com.cn/Article_en/CJFDTOTAL-CSDZ200701005.htm
    Lei K C, Chen B B, Jia S M, et al. 2014. Primary investigation of formation and genetic mechanism of land subsidence based on PS-InSAR technology in Beijing[J]. Spectroscopy and Spectral Analysis, 34(8): 2185-2189. https://pubmed.ncbi.nlm.nih.gov/25474959/
    Lei K C, Luo Y, Chen B B, et al. 2016. Distribution characteristics and influence factors of land subsidence in Beijing area[J]. Geology in China, 43(6): 2216-2225. doi: 10.12029/gc20160628
    Lei K C, Luo Y, Liu H, et al. 2019. Land subsidence monitoring report of Beijing in 2019[R]. Beijing: Beijing Institute of Hydrogeology and Engineering Geology(Beijing Institute of Geo-Environment Monitoring).
    Li M, Ge D Q, Zhang L, et al. 2016. Land subsidence of coastal area in southern Tangshan using PSinSAR technique[J]. Journal of Engineering Geology, 24(4): 704-712. doi: 10.13544/j.cnki.jeg.2016.04.028
    Luo Y, Ye S J, Wu J C. 2018. Numerical model for simulating 3D regional land subsidence[J]. Rock and Soil Mechanics, 39(3): 1063-1070. doi: 10.16285/j.rsm.2016.0599
    Wang C X, Gu T F, Zhang M S, et al. 2018. The analysis of three-dimensional(3D)ground surface deformations in Heifangtai platform[J]. Journal of Engineering Geology, 26(6): 1735-1742. doi: 10.13544/j.cnki.jeg.2018-129
    Wang Q L, Liu Y H, Chen Z X, et al. 2002. Horizontal strain of aquifer induced by groundwater pumping—A new mechanism for ground fissure movement[J]. Journal of Engineering Geology, 10(1): 46-50. http://www.gcdz.org/en/article/id/9417
    Wang Q L, Wang W P, Liang W F, et al. 1997. Horizontal aquifer movement induced by groundwater pumping and its applications to the analysis of some geological disasters[J]. Acta Seismologica Sinica, 10(4): 535-543. doi: 10.1007/s11589-997-0063-6
    Yang J T, Jiang Y X, Zhou J, et al. 2006. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics, 26(1): 70-75.
    Zhang J, Feng X D, Qi W, et al. 2018. Monitoring land subsidence in Panjin region with SBAS-InSAR method[J]. Journal of Engineering Geology, 26(4): 999-1007. doi: 10.13544/j.cnki.jeg.2017-382
    Zhang Q, Zhao C Y, Ding X L, et al. 2009. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 52(5): 1214-1222. http://manu39.magtech.com.cn/Geophy/EN/Y2009/V52/I5/1214
    Zhang Y H, Wu H A, Kang Y H. 2016. Ground subsidence over Beijing-Tianjin-Hebei Region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 45(9): 1050-1058. doi: 10.11947/j.AGCS.2016.20160072
    Zhao X K, Zhang J, Lei Q K, et al. 2019. Analysis of the current tectonic movement deformation characteristics in the Bohai rim region and adjacent areas[J]. Journal of Geodesy and Geodynamics, 39(11): 1101-1105.
    Zhou C F, Gong H L, Chen B B, et al. 2017. Study of temporal and spatial characteristics of land subsidence in Beijing[J]. Journal of Geo-Information Science, 19(2): 205-215. doi: 10.3724/SP.J.1047.2017.00205
    Zhou Y, Luo Y, Guo G X, et al. 2016. A study of the characteristics of land subsidence and the main control factors in the alluvial plain: A case study of Beijing plain[J]. Geological Bulletin of China, 35(12): 2100-2110. https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201612019.htm
    陈强, 刘国祥, 胡植庆, 等. 2012. GPS与PS-InSAR联网监测的台湾屏东地区三维地表形变场[J]. 地球物理学报, 55(10): 3248-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210008.htm
    郭海朋, 白晋斌, 张有全, 等. 2017. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质, 44(6): 1115-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706008.htm
    贾三满, 王海刚, 赵守生, 等. 2007. 北京地面沉降机理研究初探[J]. 城市地质, 2(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ200701005.htm
    雷坤超, 陈蓓蓓, 贾三满, 等. 2014. 基于PS-InSAR技术的北京地面沉降特征及成因初探[J]. 光谱学与光谱分析, 34(8): 2185-2189. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201408039.htm
    雷坤超, 罗勇, 陈蓓蓓, 等. 2016. 北京平原区地面沉降分布特征及影响因素[J]. 中国地质, 43(6): 2216-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606029.htm
    雷坤超, 罗勇, 刘贺, 等. 2019. 北京市地面沉降监测年度报告(2019年)[R]. 北京: 北京市水文地质工程地质大队(北京市地质环境监测总站).
    李曼, 葛大庆, 张玲, 等. 2016. 基于PSinSAR技术的唐山南部沿海地区地面沉降研究[J]. 工程地质学报, 24(4): 704-712. doi: 10.13544/j.cnki.jeg.2016.04.028
    罗跃, 叶淑君, 吴吉春. 2018. 三维区域地面沉降数值模拟[J]. 岩土力学, 39(3): 1063-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803036.htm
    王晨兴, 谷天峰, 张茂省, 等. 2018. 黑方台地表三维形变分析[J]. 工程地质学报, 26(6): 1735-1742. doi: 10.13544/j.cnki.jeg.2018-129
    王庆良, 刘玉海, 陈志新, 等. 2002. 抽水引起的含水层水平应变─地裂缝活动新机理[J]. 工程地质学报, 10(1): 46-50. http://www.gcdz.org/article/id/9417
    王庆良, 王文萍, 梁伟锋, 等. 1997. 抽水引起的含水层水平运动及其在地质灾害分析中的应用[J]. 地震学报, 19(4): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB704.012.htm
    杨建图, 姜衍祥, 周俊, 等. 2006. GPS测量地面沉降的可靠性及精度分析[J]. 大地测量与地球动力学, 26(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200601011.htm
    张静, 冯东向, 綦巍, 等. 2018. 基于SBAS-InSAR技术的盘锦地区地面沉降监测[J]. 工程地质学报, 26(4): 999-1007. doi: 10.13544/j.cnki.jeg.2017-382
    张勤, 赵超英, 丁晓利, 等. 2009. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报, 52(5): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200905011.htm
    张永红, 吴宏安, 康永辉. 2016. 京津冀地区1992~2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 45(9): 1050-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201609008.htm
    赵旭坤, 张俊, 雷前坤, 等. 2019. 环渤海区域及邻区现今地壳构造运动形变特征分析[J]. 大地测量与地球动力学, 39(11): 1101-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201911001.htm
    周超凡, 宫辉力, 陈蓓蓓, 等. 2017. 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 19(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201702009.htm
    周毅, 罗郧, 郭高轩, 等. 2016. 冲洪积平原地面沉降特征及主控因素——以北京平原为例[J]. 地质通报, 35(12): 2100-2110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201612019.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  80
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-06-30
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回