STUDY OF BEARING CAPACITY OF SURFACE CIRCULAR FOOTING ON STIFF-SOFT-STIFF CLAYS
-
摘要: 海洋浅基础设计所遇地层条件通常由于基础大尺寸的特点而涉及多土层剖面,其中“硬-软-硬”三层黏土是最常见的地层条件之一。现行海洋浅基础设计常用的API和ISO规范尚无针对“硬-软-硬”黏土竖向承载力的计算方法。本文基于自升式平台基础设计规范推荐的“bottom-up”预测模型,假定“硬-软-硬”黏土上基础的承载力为“硬-软”黏土冲剪破坏产生的侧向摩阻力与“软-硬”黏土挤压破坏提供的承载力之和。通过有限元模拟分析,验证了“bottom-up”方法所假定破坏模型的合理性,但由于规范推荐的相关公式忽略了上覆土层对挤压破坏模式的影响,使其严重低估了“软-硬”黏土挤压破坏产生的承载力。基于变参数有限元分析结果,本文对挤压破坏承载力公式进行了修正,提出了“硬-软-硬”三层黏土上圆形基础竖向承载力的预测方法。Abstract: The stratigraphic configurations for the design of offshore shallow foundations usually involve multi-layer soil profiles due to their large sizes. The stiff-soft-stiff clay deposit is one of the most prevalent configurations. Design methods are not available in the current API and ISO standards for shallow foundations to estimate the bearing capacity of a footing on stiff-soft-stiff clays. Based on the "bottom-up" approach recommended for spudcan foundations of jack-up rig,this paper assumes an analytical model that sums the resistances from the punching shear of the stiff-soft layering system and the squeezing of the soft-stiff layering system. The rationality of this predictive model is verified based on comprehensive FE analyses. The comparison between the predictions from "bottom-up" approach and FE analyses indicates that the assumed model is reasonable and realistic. However,the resistance due to squeezing response is significantly underestimated by the current design formula. Detailed investigations are carried out. It is revealed that this is mainly because the effect of the overlying stiff clay on the squeezing mechanism is neglected. Based on the findings,an improved design formula is proposed for the squeezing response and hence for the design of circular foundations on stiff-soft-stiff clays.
-
图 1 多层土基础竖向承载力“bottom-up”预测模型(ISO,2016b)
a. 第一步; b.第二步
Figure 1. "Bottom-up" predictive model for foundation bearing capacity on multi-layer soils(ISO, 2016b)
表 1 有限元分析参数汇总
Table 1. Summary of performed numerical analyses
组号 t1/D t2/D d/D su1/su2 su3/su2 目的 1 0.125~0.5 — 0 0.25 1 数值模型验证 2 0.125,0.5 0.125 0 8 1.5~8 变参数分析 3 0.125~0.5 0.125 0.125~0.5 1 4 4 0.125 0.125 0.125 1~8 8 5 0.125~0.5 0.1~0.29 0 3~8 3~8 表 2 单层土承载力系数比较
Table 2. Comparison of bearing capacity factors of single layer clay
参考文献 解析方法 承载力系数Nc 单层土 Cox et al.(1961) 理论解 6.05 Salgado et al.(2004) 塑性上限 6.23 塑性下限 5.86 Merifield et al.(2006) 三维有限元 6.05 Gourvenec et al.(2006) 有限元 5.96 本研究 有限元 5.98 表 3 双层土承载力系数比较
Table 3. Comparison of bearing capacity factors of soft-over-stiff clays
参考文献 解析方法 承载力系数Nc 双层土 Meyerhof et al.(1953) 理论解 7.64 Merifield et al.(2006) 三维有限元 7.95 本研究 三维有限元(加密前:最小单元尺寸0.05D) 7.69 三维有限元(加密后:最小单元尺寸0.025D) 7.44 二维有限元 7.34 -
API RP 2GEO. 2014. Recommended practice for geotechnical and foundation design considerations[S]. Washington DC: American Petroleum Institute. Brown J D, Meyerhofg G. 1969. Experimental study of bearing capacity in layered clays[C]//Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering, 2 : 45-51. Cox A D, Eason G, Hopkin H G. 1961. Axially symmetric plastic deformation in soils[J]. Proceedings of the Royal Society A, 254 : 1-45. http://www.onacademic.com/detail/journal_1000036255605910_43d5.html Edwards D H, Zdravkovic L, Potts D M. 2005. Depth factors for undrained bearing capacity[J]. Géotechnique, 55 (10): 755-758. doi: 10.1680/geot.2005.55.10.755 Feng X, Randolph M F, Gourvenec S, et al. 2014. Design approach for rectangular mudmats under fully three-dimensional loading[J]. Géotechnique, 64 (1): 51-63. doi: 10.1680/geot.13.P.051 Gourvenec S, Randolph M F, Kingsnorth O. 2006. Undrained bearing capacity of square and rectangular footings[J]. International Journal of Geomechanics, 6 (3): 147-157. doi: 10.1061/(ASCE)1532-3641(2006)6:3(147) Hossain M S, Randolph M F. 2009. New mechanism-based design approach for spudcan foundations on single layer clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 135 (9): 1264-1274. doi: 10.1061/(ASCE)GT.1943-5606.0000054 ISO. 2016a. Petroleum and natural gas industries-Specific requirements for offshore structures-Part 4: Geotechnical and foundation design considerations(ISO 19901-4)[S]. Geneva: International Organization for Standardization. ISO. 2016b. Petroleum and natural gas industries—Site specific assessment of mobile offshore units-Part 1: Jack-ups(ISO 19905-1)[S]. Geneva: International Organization for Standardization. Li S, Wang Y C, Wu X Z, et al. 2015. Centrifugal model tests on mechanism of spudcan penetration of jack-up drilling platform in egg-shell layered soil[J]. Chinese Journal of Geotechnical Engineering, 37 (3): 479-486. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201503013.htm Liu Q B, Lehane B M, Tian Y. 2020. Bearing capacity and stiffness of embedded circular footings on stiff-over-soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 146(11): 06020020. doi: 10.1061/(ASCE)GT.1943-5606.0002393 Merifield R S, Nguyen V Q. 2006. Two-and three-dimensional bearing-capacity solutions for footing on two-layered clays[J]. Geomechanics and Geoengineering, 1 (2): 151-162. doi: 10.1080/17486020600632637 Merifield R S, Sloan S W, Yu H S. 1999. Rigorous solutions for the bearing capacity of two layered clay soils[J]. Géotechnique, 49 (4): 471-490. doi: 10.1680/geot.1999.49.4.471 Meyerhof G G, Chaplin T K. 1953. The compression and bearing capacity of cohesive layers[J]. British Journal of Applied Physics, 4 (1): 20-26. doi: 10.1088/0508-3443/4/1/305 Salgado R, Lyamin A V, Sloan S W, et al. 2004. Two-and three-dimensional bearing capacity of foundations in clay[J]. Géotechnique, 54 (5): 297-306. doi: 10.1680/geot.2004.54.5.297 Skempton A W. 1951. The bearing capacity of clays[C]//Proceeding of the Building Research Congress, 1 : 180-189. Ullah S N, Stanier S, Hu Y, et al. 2017a. Foundation punch-through in clay with sand: analytical modelling[J]. Géotechnique, 67 (8): 672-690. doi: 10.1680/jgeot.16.P.101 Ullah S N, Stanier S, Hu Y, et al. 2017b. Foundation punch-through in clay with sand: centrifuge modelling[J]. Géotechnique, 67 (10): 870-889. doi: 10.1680/jgeot.16.P.100 Ullah S N, Hu Y. 2017c. Peak punch-through capacity of spudcan in sand with interbedded clay: numerical and analytical modelling[J]. Canadian Geotechnical Journal, 54 (8): 1071-1088. doi: 10.1139/cgj-2016-0597 Zheng J, Hossain M S, Wang D. 2015a. Numerical modelling of spudcan deep penetration in three-layer clays[J]. International Journal of Geomechanics, 15(6): 04014089. doi: 10.1061/(ASCE)GM.1943-5622.0000439 Zheng J, Hossain M S, Wang D. 2015b. New design approach for spudcan penetration in nonuniform clay with an interbedded stiff layer[J]. Journal of Geotechnical and Geoenvironmental Engineering, 141(4): 04015003. doi: 10.1061/(ASCE)GT.1943-5606.0001282 Zheng J, Hossain M S, Wang D. 2018. Estimating spudcan penetration resistance in stiff-soft-stiff clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 144(3): 04018001. doi: 10.1061/(ASCE)GT.1943-5606.0001820 Zheng J B, Hu P, Wang D. 2018. Prediction of punch-through during spudcan installation in complex soil profiles[J]. The Ocean Engineering, 36 (3): 123-130. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201803017.htm 李飒, 王耀存, 吴兴州, 等. 2015. 夹层土上自升式钻井平台穿刺机理的离心模型试验研究[J]. 岩土工程学报, 37 (3): 479-486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503013.htm 郑敬宾, 胡畔, 王栋. 2018. 复杂土层中自升式平台桩靴安装穿刺预测[J]. 海洋工程, 36 (3): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201803017.htm -