黏土中水平受荷大直径单桩设计方法的对比研究

周媛 郑敬宾 王栋

周媛, 郑敬宾, 王栋.2021. 黏土中水平受荷大直径单桩设计方法的对比研究[J].工程地质学报, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100
引用本文: 周媛, 郑敬宾, 王栋.2021. 黏土中水平受荷大直径单桩设计方法的对比研究[J].工程地质学报, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100
Zhou Yuan, Zheng Jingbin, Wang Dong. 2021. Study on design methods of horizontally loaded large-diameter monopile in clay [J].Journal of Engineering Geology, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100
Citation: Zhou Yuan, Zheng Jingbin, Wang Dong. 2021. Study on design methods of horizontally loaded large-diameter monopile in clay [J].Journal of Engineering Geology, 29(6): 1759-1769. doi: 10.13544/j.cnki.jeg.2021-0100

黏土中水平受荷大直径单桩设计方法的对比研究

doi: 10.13544/j.cnki.jeg.2021-0100
基金项目: 

国家自然科学基金 51809247

国家自然科学基金 U1806230

山东省自然科学基金 ZR2018BEE043

详细信息
    作者简介:

    周媛(1996-),女,硕士生,主要从事岩土工程方面的科研工作. E-mail: 873653707@qq.com

    通讯作者:

    郑敬宾(1989-),男,博士,主要从事海洋工程地质与岩土工程方面的科研与教学工作. E-mail: zhengjingbin@ouc.edu.cn

  • 中图分类号: P67;P642

STUDY ON DESIGN METHODS OF HORIZONTALLY LOADED LARGE-DIAMETER MONOPILE IN CLAY

Funds: 

National Natural Science Foundation of China 51809247

National Natural Science Foundation of China U1806230

Natural Science Foundation of Shandong Province ZR2018BEE043

  • 摘要: 本文针对静力荷载作用的情况,对比了4种黏土中水平受荷大直径单桩的设计方法,包括基于p-y弹簧模型的API规范方法,以及新近发展的基于p-y弹簧模型的Zhang et al.(2017b)、基于双弹簧模型的Wang et al.(2020)方法以及基于三弹簧模型的Fu et al.(2020)方法。考虑两种大直径单桩常用的长径比(L/D=5和10),通过与三维有限元结果比较,对现有设计方法进行了对比,分析了不同参数对预测结果的影响。结果表明:(1)对于大直径单桩的水平位移和转角,现行API规范的预测值最大,而Wang et al.(2020)方法预测值最小; (2)Fu et al.(2020)方法不仅考虑了桩底剪力及桩身摩擦造成的分布力矩,还能够有效捕捉初始剪切模量与土体延性对水平响应的影响,还因此具备其余方法所不具备的优势; (3)采用Fu et al.(2020)方法时,桩土界面粗糙系数α越大,桩身位移与转角越大,且长径比越小影响越显著,而与桩身分布力矩有关的缩放系数ξp2的影响则相对有限,当L/D≥10时其影响可以忽略。
  • 图  1  风机单桩基础受力图

    Figure  1.  Force diagram of monopile foundation

    图  2  水平受荷桩分析方法示意图

    a. API规范法; b. Zhang et al.(2017b)方法; c. Wang et al.(2020)方法; d. Fu et al.(2020)方法

    Figure  2.  Analysis methods for pile under horizontal load

    图  3  黏土中水平受荷大直径单桩三维有限元模型(L/D=5)

    Figure  3.  Three-dimensional finite element model of monopile under horizontal load in clay(L/D=5)

    图  4  有限元结果对比图

    Figure  4.  Comparison of finite element analysis results

    图  5  不同方法结果对比

    a. L/D=5,H=2000kN,M=60000kN ·m; b. L/D=10,桩顶H=5000kN,M=150000kN ·m

    Figure  5.  Comparison of results on different methods

    图  6  初始剪切模量Gmax的影响

    a. L/D=5,H=1200kN,M=36000kN ·m; b. L/D=10,H=5000kN,M=150000kN ·m

    Figure  6.  Influence of initial shear modulus Gmax

    图  7  破坏塑性剪应变γfp的影响

    a. L/D=5,H=1200kN,M=36000kN ·m; b. L/D=10,H=5000kN,M=150000kN ·m

    Figure  7.  Influence of plastic shear strain on failure γfp

    图  8  不同α条件下预测结果的对比

    a. L/D=5,H=5000kN; b. L/D=10,H=10000kN

    Figure  8.  Comparison of prediction results under different α

    图  9  不同ξp2条件下预测结果的对比

    a. L/D=5,H=5000kN; b. L/D=10,H=10000kN

    Figure  9.  Comparison of prediction results under different ξp2

  • American Petroleum Institute(API). 2014. Geotechnical and foundation design considerations[EB/OL]. (2011-1-1)[2021-3-4]. https://infostore.saiglobal.com/en-au/Standards/Product-Details-97863_SAIG_API_API_205225/?ProductID=97863_SAIG_ API_ API_205225.
    Byrne B W, McAdam R, Burd H J, et al. 2015a. New design methods for large diameter piles under lateral loading for offshore wind applications[C]//Third International Symposium on Frontiers in Offshore Geotechnics(ISFOG 2015). Oslo Norway: [s.n.]: 705-710.
    Byrne B W, McAdam R A, Burd H J, et al. 2015b. Field testing of large diameter piles under lateral loading for offshore wind applications[C]//Proceedings of the XVI European conference on soil mechanics and geotechnical engineering: 1255-1260.
    Chen L P, Zhang Y K, Li D Y. 2020. Review of uplift capacity and pullout mechanism of suction caissons for offshore foundation[J]. Journal of Engineering Geology, 28 (3): 639-649.
    Ding H Y, Liu Y G, Zhang P Y, et al. 2015. Model tests on the bearing capacity of wide shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 103 : 114-122. doi: 10.1016/j.oceaneng.2015.04.068
    DNV GL. 2017. Offshore soil mechanics and geotechnical engineering (DNVGL-RP-C212)[S]. Offshore Standard.
    DNV GL. 2018. Support structures for wind turbines (DNVGL-ST-0126)[S]. DNVGL Standard.
    Fu D F, Zhang Y H, Aamodt K K, et al. 2020. A multi-spring model for monopile analysis in soft clays[J]. Marine Structures, 72: 102768. doi: 10.1016/j.marstruc.2020.102768
    Gong W M, Huo S L, Yang C, et al. 2015. Experimental study on horizontal bearing capacity of large diameter steel pipe pile for offshore wind farm[J]. Journal of Hydraulic Engineering, 46 (S1): 34-39. http://www.researchgate.net/publication/283231234_Experimental_study_on_horizontal_bearing_capacity_of_large_diameter_steel_pipe_pile_for_offshore_wind_farm
    Grimstad G, Andresen L, Jostad H P. 2012. NGI-ADP: anisotropic shear strength model for clay[J]. International Journal for Numerical and Analytical Methods in Geomechnics, 36 (4): 483-497. doi: 10.1002/nag.1016
    Jeanjean P. 2009. Re-assessment of p-y curves for soft clays from centrifuge testing and fintie element modeling[C]//Offshore technology conference. Houston, Texas: [s.n.].
    Li H Y, Chi H M, Cao E Z, et al. 2019. Optimization design of replacement layer of compacted fill for WTG foundation in collapsible loess area[J]. Journal of Engineering Geology, 27(S): 89-94.
    Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology[J]. Journal of Engineering Geology, 28 (1): 169-177.
    Matlock H. 1970. Correlations for design of laterally loaded piles in soft clay[C]//Offshore Technology Conference. Houston, Texas. [s.n.]: 577-588.
    Ma J X, Zhang M Y, Wang Y H. 2020. Current status and prospects of test techniques for prestressed high strength concrete pipe pile[J]. Journal of Engineering Geology, 28 (4): 896-906.
    Meng X W, Zhai E D, Xu C S. 2019. Research on the applicability of p-y curve to large-diameter monopiles under layer soil[J]. Ocean Technology, 38 (2): 105-112.
    Monajemi H, Razak H A. 2009. Finite element modeling of suction anchors under combined loading[J]. Marine Structures, 22 (4): 660-669. doi: 10.1016/j.marstruc.2009.02.001
    Page A M, Skau K S, Jostad H P, et al. 2017. A new foundation model for integrated analyses of monopile-based offshore wind turbines[J]. Energy Procedia 137 : 100-107. doi: 10.1016/j.egypro.2017.10.337
    Qi W G, Tian J K, Zheng H Y, et al. 2014. Bearing capacity of the high-rise pile cap foundation for offshore wind turbines[J]. IOP Conference Series Earth and Environmental Science, 93(1): 012037. http://www.researchgate.net/profile/Fu-Ping_Gao/publication/269047564_Bearing_Capacity_of_the_High-Rise_Pile_Cap_Foundation_for_Offshore_Wind_Turbines/links/55abbfa608aea3d086851dab.pdf
    Ramírez L, Fraile D, Brindley G. 2020. Offshore wind in Europe: Key trends and statistics 2019[EB/OL]. (2020-2-6)[2021-3-4]. https://windeurope.org/data-and-analysis/product/offshore-wind-in-europe-key-trends-and-statistics-2019/
    Reese L C, Cox W R, Koop F D. 1974. Analysis of laterally loaded piles in sand[C]//Offshore Technology Conference. Houston, Texas: [s.n.].
    Wang L, Lai Y, Hong Y, et al. 2020. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter(L/D) ratios[J]. Ocean Engineering, 212: 107492. doi: 10.1016/j.oceaneng.2020.107492
    Zhang H Y, Liu R, Yuan Y, et al. 2020. A modified p-y curve method for offshore large-diameter monopile foundations[J]. Journal of Hydraulic Engineering, 51 (2): 201-211.
    Zhang Y, Andersen K H, Tedesco G. 2017a. Ultimate bearing capacity of laterally loaded piles in clay-some practical considerations[J]. Marine Structures, 50 : 260-275. http://smartsearch.nstl.gov.cn/paper_detail.html?id=fe777e012e6827115e089a6cdc791c9f
    Zhang Y, Andersen K H. 2017b. Scaling of lateral pile p-y response in clay from laboratory stress-strain curves[J]. Marine Structures, 53 : 124-135. doi: 10.1016/j.marstruc.2017.02.002
    Zhang Y, Andersen K H. 2019. Soil reaction curves for monopiles in clay[J]. Marine Structures, 65 : 94-113. doi: 10.1016/j.marstruc.2018.12.009
    Zou X, Hu Y, Hossain M S, et al. 2018. Capacity of skirted foundations in sand-over-clay under combined VHM loading[J]. Ocean Engineering, 159 : 201-218. doi: 10.1016/j.oceaneng.2018.04.007
    陈林平, 张雨坤, 李大勇. 2020. 吸力基础抗拔与拔出机理的研究进展[J]. 工程地质学报, 28 (3): 639-649. doi: 10.13544/j.cnki.jeg.2019-024
    龚维明, 霍少磊, 杨超, 等. 2015. 海上风机大直径钢管桩基础水平承载特性试验研究[J]. 水利学报, 46 (S1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1007.htm
    李红有, 迟洪明, 曹恩志, 等. 2019. 湿陷性黄土地区风机基础换填方案优化设计[J]. 工程地质学报, 27(增): 89-94. doi: 10.13544/j.cnki.jeg.2019125
    刘晓磊, 陆杨, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
    马加骁, 张明义, 王永洪. 2020. 预应力高强度混凝土管桩桩身受力特性测试技术研究进展[J]. 工程地质学报, 28 (4): 896-906. doi: 10.13544/j.cnki.jeg.2019-290
    孟晓伟, 翟恩地, 许成顺. 2019. p-y曲线对成层土体中大直径单桩的适用性研究[J]. 海洋技术学报, 38 (2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201902016.htm
    张海洋, 刘润, 袁宇, 等. 2020. 海上大直径单桩基础p-y曲线修正[J]. 水利学报, 51 (2): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002008.htm
  • 加载中
图(9)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  39
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-30
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回