碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究

陈锐 郝若愚 李笛 包卫星 来弘鹏

陈锐, 郝若愚, 李笛, 等. 2022. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报, 30(2): 327-337. doi: 10.13544/j.cnki.jeg.2021-0134
引用本文: 陈锐, 郝若愚, 李笛, 等. 2022. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报, 30(2): 327-337. doi: 10.13544/j.cnki.jeg.2021-0134
Chen Rui, Hao Ruoyu, Li Di, et al. 2022. Study on road performance and freeze-thaw resistance of alkali activated material stabilized low-liquid-limit silty clay[J]. Journal of Engineering Geology, 30(2): 327-337. doi: 10.13544/j.cnki.jeg.2021-0134
Citation: Chen Rui, Hao Ruoyu, Li Di, et al. 2022. Study on road performance and freeze-thaw resistance of alkali activated material stabilized low-liquid-limit silty clay[J]. Journal of Engineering Geology, 30(2): 327-337. doi: 10.13544/j.cnki.jeg.2021-0134

碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究

doi: 10.13544/j.cnki.jeg.2021-0134
基金项目: 

国家自然科学基金项目 51708041

陕西省自然科学基金项目 2018JQ5001

陕西省自然科学基金项目 2022JM-228

长安大学中央高校基本科研业务费专项资金 300102210213

详细信息
    通讯作者:

    陈锐(1987-),男,博士,副教授,主要从事特殊土力学和地基处理方面的科研与教学工作. E-mail: rchenua@chd.edu.cn

  • 中图分类号: TU416.1

STUDY ON ROAD PERFORMANCE AND FREEZE-THAW RESISTANCE OF ALKALI ACTIVATED MATERIAL STABILIZED LOW-LIQUID-LIMIT SILTY CLAY

Funds: 

the National Natural Science Foundation of China 51708041

Natural Science Foundation of Shaanxi Province, China 2018JQ5001

Natural Science Foundation of Shaanxi Province, China 2022JM-228

Fundamental Research Funds for the Central Universities, CHD 300102210213

  • 摘要: 以伊犁地区S315线蜂场至尼勒克段低液限粉黏土为研究对象,以碱激发材料为固化剂,对粉质黏土和其固化土开展了路用性能指标试验与冻融循环试验,并利用电镜扫描试验(SEM)与X射线衍射试验(XRD)研究了固化土的微观特征,探讨了碱激发材料对粉质黏土路用性能指标与抗冻融特性的影响。试验结果表明,固化土的无侧限抗压强度与抗剪强度随碱激发材料掺量和养护龄期的增加而增大;固化土的CBR值与回弹模量随碱激发材料掺量的增加而显著增大,固化土路用性能指标满足规范要求。低液限粉黏土对冻融敏感,其冻胀、融沉率的大小与降温速率、含水率有关,相同温差下温度梯度越小土体受冻融影响越明显,相同温度梯度下含水率越高土体受冻融影响越明显。不同碱激发材料掺量下的固化土在补水条件下冻胀率均小于1%,不发生冻胀。微观特征分析结果表明,碱激发材料的主要水化产物是C(-A)-S-H凝胶,其生成量随龄期增加,其填充和胶结作用使土体形成致密的微观结构,从而提高土体的强度,同时增强其抗冻融稳定性。
  • 图  1  冻融循环试验装置

    Figure  1.  Apparatus for freeze-thaw cycling test

    图  2  碱激发材料固化土与粉黏土击实曲线

    Figure  2.  Compaction curves of alkali-activated material treated soils(3%, 5% and 8%) and silty clay

    图  3  固化土的CBR值与碱激发材料掺量的关系

    Figure  3.  Relationship between CBR value of solidified soil and content of alkali activated material

    图  4  固化土的回弹模量与碱激发材料掺量的关系

    Figure  4.  Relationship between resilient modulus of solidified soil and content of alkali activated material

    图  5  固化土的抗剪强度指标与碱激发材料掺量的关系

    Figure  5.  Relationship between shear strength index of solidified soil and content of alkali activated material

    图  6  固化土的无侧限抗压强随着掺入比与养护龄期的变化

    Figure  6.  The variation of unconfined compressive strength of solidified soil with the mixing ratio and curing age

    图  7  不同降温速率下粉黏土冻胀率随含水率的变化

    Figure  7.  Variation of frozen heave rate of silty clay with water content under different freezing rates

    图  8  粉黏土的融沉率随含水率的变化

    Figure  8.  Variation of thawing settlement of silty clay with water content

    图  9  冻融循环下粉黏土的冻胀、融沉特性

    a. 粉黏土的冻胀和融沉量随冻融循环次数的变化; b. 粉黏土的冻胀和融沉率随冻融循环次数的变化

    Figure  9.  Freeze-thaw characteristics of silty clay

    图  10  固化土的冻胀、融沉量随冻融循环次数的变化

    a. 无补水; b有补水

    Figure  10.  Variation of frozen heave and thaw settlement of solidified soils

    图  11  固化土冻胀、融沉率随冻融循环次数的变化

    a. 无补水; b. 有补水

    Figure  11.  Changes of frozen heave and thawing settlement rate of solidified soil with freeze-thaw cycles

    图  12  固化土与纯碱激发材料的XRD谱图

    a. 不同掺量的固化土; b. 不同龄期的纯碱激发材料

    Figure  12.  XRD spectra of solidified soil and alkali activated materials

    图  13  粉黏土与固化土SEM照片

    a. 粉黏土; b. 掺量3%的固化土; c. 掺量5%的固化土; d. 掺量8%的固化土

    Figure  13.  SEM images of silty clay and solidified soil

    图  14  素土与养护龄期为28d的固化土的表观孔隙率对比

    Figure  14.  Comparison of apparent porosity between silty clay and solidified soil with curing age of 28 days

    表  1  粉黏土的基本物理指标

    Table  1.   Basic physical indexes of silty clay

    最大干密度ρd /g·cm-3 最优含水率ω /% ωL/% ωP/% IP/%
    1.91 11.20 32.7 21.5 11.2
    下载: 导出CSV

    表  2  原料化学成分

    Table  2.   Chemical composition of raw materials

    化学组分 SiO2/% Fe2O3/% Al2O3/% CaO/% MgO/% K2O/% SO3/% Na2O/% 烧失量/%
    粉煤灰 52.34 9.62 24.48 5.0 1.91 2.27 0.46 0.78 3.14
    钢渣 31.20 35.40 9.00 8.4 2.40 2.30 3.10 2.74 5.46
    水泥 19.40 3.32 6.84 60.6 2.68 0.95 5.26 0.20 0.75
    下载: 导出CSV

    表  3  路用性能试验方案

    Table  3.   Road performance test plan

    试验项目 掺入比/% 养护龄期/d
    承载比 0,3,5,8 7
    回弹模量 0,3,5,8 7
    无侧限抗压强度 0,3,5,8 7,28
    直剪 0,3,5,8 7
    下载: 导出CSV

    表  4  冻胀融沉试验方案

    Table  4.   Plan for evaluating frost heaving and thawing settlement

    试验项目 掺入比/% 温度梯度/℃·h-1 初始含水率/%
    冻胀 0 -6,-4,-2 20,24,28
    融沉 0 -2 20,24,28
    冻融循环 0,3,5,8 -2 最佳含水率(补水)
    下载: 导出CSV

    表  5  微观特征分析试验方案

    Table  5.   Test plan for micro characterization

    试验项目 研究对象 养护龄期/d
    XRD 碱激发材料,固化土 7,28
    SEM 粉黏土,固化土 28
    下载: 导出CSV

    表  6  素土与碱激发材料固化土液、塑限

    Table  6.   Liquid and plastic limits of untreated soil and alkali-activated material treated soils(3%, 5% and 8%)

    碱激发材料掺量/% ωL/% ωP/% IP/%
    0(素土) 32.7 21.5 11.7
    3 33.1 23.0 10.1
    5 35.9 25.4 10.5
    8 36.3 26.2 10.1
    下载: 导出CSV
  • Bao W X. 2012. Experimental study on improving low liquid limit silty clay subgrade with natural gravel[C]//Highway Science and Technology Papers of Highway Society of Western China. Beijing: China Highway and Transportation Society: 31-35.
    Chen R, Zhu Y, Lai H P, et al. 2020. Stabilization of soft soil using low-carbon alkali-activated binder[J]. Environmental Earth Sciences, 79(22): 510. doi: 10.1007/s12665-020-09259-x
    Cristelo N, Glendinning S, Fernandes L, et al. 2012. Effect of calcium content on soil stabilisation with alkaline activation[J]. Construction and Building Materials, 29 : 167-174. doi: 10.1016/j.conbuildmat.2011.10.049
    Cristelo N, Glendinning S, Pinto A T. 2011. Deep soft soil improvement by alkaline activation[J]. Proceedings of the Institution of Civil Engineerings-Ground Improvement, 164 (12): 73-82.
    Du Y J, Jiang N J, Liu S Y, et al. 2016. Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue[J]. Soils and Foundations, 56 (2): 301-314. doi: 10.1016/j.sandf.2016.02.012
    Fu W, Wang R. 2010. Experimental study of electrical resistivity and deformation characteristics of saturated silty clay during repeated freeze-thaw cycles[J]. Rock and Soil Mechanics, 31 (3): 769-774.
    He H. 2017. Study on the performance and application of geopolymer in soft soil foundation treatment[D]. Changsha: Changsha University of Science & Technology.
    He J, Shi X K, Li Z X. 2019. Strength properties of dredged silt at high water content treated with sodium silicate, soda residue and ground granulated blastfurnace slag[J]. Journal of Engineering Geology, 27 (4): 729-736.
    Jiang N J, Du Y J, Liu S Y, et al. 2015. Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue[J]. Canadian Geotechnical Journal, 53 (2): 373-383.
    Jiang Y, Jia L J, Weng M Y, et al. 2019. Preparation of alkali activated fly ash/steel slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 38 (7): 2152-2156, 2161.
    Li N, Wang T L, Xu C, et al. 2017. Study on the microcosmic fractal characteristics of silty clay to repeated freezing and thawing[J]. Railway Standard Design, 61 (10): 48-52.
    Li T B. 2010. Experimental study on deformation behavior of improved silty clay subgrade in Xinjiang[D]. Xi'an: Chang'an University.
    Li Z Y. 2011. Experimental study on frost heaving of silty clay in seasonal frozen soil area[D]. Harbin: Heilongjiang University.
    Lin T G, He H, Xu D F, et al. 2018. Mechanical properties and microscopic test of Wenzhou soft soil reinforced by geopolymer[J]. Journal of Yangtze River Scientific Research Institute, 35 (10): 104-108.
    Lü Q F, He J F, Wang Z S, et al. 2020. Study on interaction mechanism between clay minerals and alkali activated geopolymers[J]. Journal of Engineering Geology, 28 (6): 1205-1212.
    Ma H, Zhang Z L, Yue F T, et al. 2018. Strength variation law of frozen cement-treated silty clay[J]. Science Technology and Engineering, 18 (17): 291-296.
    Provis J L, Deventer J S J V. 2014a. Alkali activated materials[M]. Netherlands: Springer.
    Provis J L, Bernal S A. 2014b. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 44 (1): 299-327. doi: 10.1146/annurev-matsci-070813-113515
    Rios S, Cristelo N, Viana da Fonseca A, et al. 2016. Structural performance of alkali-activated soil ash versus soil cement[J]. Journal of Materials in Civil Engineering, 28(2): 04015125. doi: 10.1061/(ASCE)MT.1943-5533.0001398
    Sargent P, Hughes P N, Rouainia M, et al. 2013. The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils[J]. Engineering Geology, 152 (1): 96-108. doi: 10.1016/j.enggeo.2012.10.013
    Tang Y Q, Zhao W Q, Zhou J. 2020. Laboratory test study on moisture migration within mucky clay under unidirectional freezing in closed system[J]. Journal of Engineering Geology, 28 (5): 935-941.
    Wang D X, Du Y Y, Xiao J. 2019. Shear properties of stabilized loess using novel reactive magnesia-bearing binders[J]. Journal of Materials in Civil Engineering, 31(5): 04019039. doi: 10.1061/(ASCE)MT.1943-5533.0002662
    Wang T L, Liu J K, Tian Y H. 2011. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 32 (1): 193-198.
    Xu L Y. 2015. Research for microstructure of Hangzhou soft clay[D]. Hangzhou: Zhejiang University.
    Yi Y L, Li C, Sun C, et al. 2013. Test on alkali-activeted ground granulated blast-furnace slag(GGBS)for Lianyungang soft soil stabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (9): 1820-1826.
    Zhan G F, Zhang Q, Zhu F, et al. 2015. Research on influence of freeze-thaw cycles on static strength of lime-treated silty clay[J]. Rock and Soil Mechanics, 36 (S2): 351-356.
    Zhang S M, Li S Y. 2012. Experimental study of the Tibetan silty clay under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 34 (3): 625-631.
    Zhao X H, Liu C Y, Wang W J, et al. 2017. Experimental research on physical and mechanical properties of soda residue mixingsoils used for filling embankment[J]. Bulletin of the Chinese Ceramic Society, 36 (4): 1406-1411, 1423.
    Zheng W Z, Zhu J. 2015. Application foundation of alkali slag cementitious material in structural engineering[M]. Harbin: Harbin Institute of Technology Press: 1-53.
    Zheng W Z, Zou M N, Wang Y. 2019. Research progress of alkali activated cementitious materials[J]. Journal of Building Structures, 40 (1): 28-39.
    Zheng X Y, Liu X X, Wu J, et al. 2020. Impact of ultra-fine cement on early compressive strength of cement stabilized soft soil[J]. Journal of Engineering Geology, 28 (4): 685-696.
    Zhou Q Y, Xiong B L, Yang G Q, et al. 2013. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 35 (S2): 439-444.
    Zhu Y, Chen R. 2020. Experimental study on factors affecting strength of soft soil stabilized with alkali-activated material[J]. Highway, 65 (3): 23-28.
    包卫星. 2012. 天然砂砾改良低液限粉黏土路基试验研究[C]//中国西部地区公路学会2012年公路科技论文集. 北京: 中国公路学会: 31-35.
    付伟, 汪稔. 2010. 饱和粉质黏土反复冻融电阻率及变形特性试验研究[J]. 岩土力学, 31 (3): 769-774. doi: 10.3969/j.issn.1000-7598.2010.03.018
    何华. 2017. 地聚合物处理软土地基性能与应用研究[D]. 长沙: 长沙理工大学.
    何俊, 石小康, 栗志翔. 2019. 水玻璃-碱渣-矿渣固化高含水率淤泥的强度性质[J]. 工程地质学报, 27 (4): 729-736. doi: 10.13544/j.cnki.jeg.yt2019046
    蒋勇, 贾陆军, 文梦媛, 等. 2019. 碱激发粉煤灰/钢渣胶凝材料的制备[J]. 硅酸盐通报, 38 (7): 2152-2156, 2161. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201907027.htm
    李楠, 王天亮, 徐昌, 等. 2017. 反复冻融作用下粉质黏土的微观分形特征研究[J]. 铁道标准设计, 61 (10): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201710012.htm
    李廷斌. 2010. 新疆改良粉黏土路基变形性状试验研究[D]. 西安: 长安大学.
    李兆宇. 2011. 季节冻土区粉质黏土冻胀性试验研究[D]. 哈尔滨: 黑龙江大学.
    林天干, 何华, 许东风, 等. 2018. 地聚合物加固软土力学性能及微观试验研究[J]. 长江科学院院报, 35 (10): 104-108. doi: 10.11988/ckyyb.20170470
    吕擎峰, 何俊峰, 王子帅, 等. 2020. 黏土矿物与碱激发地聚物的相互作用机理[J]. 工程地质学报, 28 (6): 1205-1212. doi: 10.13544/j.cnki.jeg.2019-547
    马卉, 张志良, 岳丰田, 等. 2018. 水泥改良粉质黏土的冻土强度变化规律[J]. 科学技术与工程, 18 (17): 291-296. doi: 10.3969/j.issn.1671-1815.2018.17.047
    唐益群, 赵文强, 周洁. 2020. 封闭系统单向冻结淤泥质黏土水分迁移特性研究[J]. 工程地质学报, 28 (5): 935-941. doi: 10.13544/j.cnki.jeg.2020-268
    王天亮, 刘建坤, 田亚护. 2011. 冻融作用下水泥及石灰改良土静力特性研究[J]. 岩土力学, 32 (1): 193-198. doi: 10.3969/j.issn.1000-7598.2011.01.031
    徐丽阳. 2015. 杭州软黏土微观结构试验研究[D]. 杭州: 浙江大学.
    易耀林, 李晨, 孙川, 等. 2013. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 32 (9): 1820-1826. doi: 10.3969/j.issn.1000-6915.2013.09.013
    战高峰, 张群, 朱福, 等. 2015. 冻融循环对石灰处置粉质黏土静强度影响研究[J]. 岩土力学, 36 (S2): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2049.htm
    张世民, 李双洋. 2012. 青藏粉质黏土冻融循环试验研究[J]. 冰川冻土, 34 (3): 625-631. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201203016.htm
    赵献辉, 刘春原, 王文静, 等. 2017. 路堤填垫用碱渣拌合土物理力学性能试验研究[J]. 硅酸盐通报, 36 (4): 1406-1411, 1423. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201704052.htm
    征西遥, 刘秀秀, 吴俊, 等. 2020. 超细水泥对固化软土早期抗压强度影响的试验研究[J]. 工程地质学报, 28 (4): 685-696. doi: 10.13544/j.cnki.jeg.2019-240
    郑文忠, 朱晶. 2015. 碱矿渣胶凝材料结构工程应用基础[M]. 哈尔滨: 哈尔滨工业大学出版社: 1-53.
    郑文忠, 邹梦娜, 王英. 2019. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 40 (1): 28-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201901005.htm
    周乔勇, 熊保林, 杨广庆, 等. 2013. 低液限粉土微观结构试验研究[J]. 岩土工程学报, 35 (S2): 439-444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2075.htm
    朱月, 陈锐. 2020. 碱激发材料加固软土强度的影响因素试验研究[J]. 公路, 65 (3): 23-28 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202003006.htm
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  65
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-09-28
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回