ANALYSIS OF PORE STRUCTURE BASED SWRC PREDICTING MODELS IN CHARACTERIZING CHEMICAL EFFECTS ON SWRC OF COMPACTED BENTONITE
-
摘要: 在高放废弃物深地质处置库复杂的地下水环境影响下,缓冲/回填材料微观孔隙结构的改变通常会大大影响其水力性质。为探究这种影响,众多学者从不同理论出发,建立了相应的土水特征模型。然而,针对这些模型的对比研究较少,且缺少将模型应用于考虑化学影响的情况。在压实膨润土微观结构分析的基础上,基于分形理论和双孔理论,分别构建了压实膨润土土水特征预测模型,然后基于不同浓度NaCl溶液处理后压实GMZ膨润土的压汞试验数据,用两种模型预测其土水特征曲线,并与实测曲线进行比较。研究结果表明:两种模型均适用于预测化学溶液作用下压实膨润土的土水特征曲线;经历干湿循环使压实膨润土孔径趋于均一,导致其土水特征曲线为单峰形式,试样的持水作用由小孔主导,故相较于双孔持水的实测试样,预测试样在低吸力范围内持水能力较低;与蒸馏水处理后相比,盐溶液导致集聚体间孔隙减少,在相同基质吸力下试样的含水量降低;而在高浓度盐溶液处理后,由于孔隙流体通道增加和压实膨润土内部产生微裂隙,试样在高吸力范围内的持水性略有增强。Abstract: During the long-term operation of deep geological repository of high-level radiational waste, the chemical environment causes changes to the pore structure of the buffer/backfill material, which can affect the material's hydro-mechanical properties. Under the foundation of fractal theory and dual-porosity theory, we establish two pore structure based SWRC predicting models to study the feasibility of the two theories to connect the microstructure with hydraulic properties of compacted betonite considering chemical effects. The pore size distribution data of compacted GMZ bentonite treated with different concentrations of NaCl solution is obtained by mercury intrusion method. The SWRCs of the samples are predicted through the established models and compared with the measured curves. Results show that the predicted SWRCs tend to be the same as the measured SWRCs in the higher range of matric suction. However, compared with the dual-porosity of the SWRC testing specimen, only the intra-aggregate pores control the water retention capacity of the compacted bentonite after the wetting and drying process. Therefore, the predicted SWRCs show single peak and the established models don't perform well in the lower suction range. Compared with the distilled water treatment, the salt solution leads to the decrease of inter-aggregate porosity and the decrease of water content under the same matric suction. However, with the treatment of more concentrated salt solution, the water retention capacity of the specimen increases slightly in the range of high suction due to the increase of pore fluid channels and the formation of micro-cracks in the compacted bentonite.
-
图 2 膨润土微观结构示意图(修自Nasir et al.(2017))
Figure 2. The microstructure of bentonite(modified from Nasir et al.(2017))
图 3 压实GMZ膨润土(ρd=1.7 Mg ·m-3)的孔径密度曲线(He et al., 2016)
Figure 3. The pore size density curve of compacted GMZ bentonite(ρd=1.7 Mg ·m-3)(He et al., 2016)
图 4 压实GMZ膨润土(ρd=1.7 Mg ·m-3)的累计压汞曲线(He et al., 2016)
Figure 4. The pore size cumulative curve of compacted GMZ bentonite(ρd=1.7 Mg ·m-3)(He et al., 2016)
图 5 基于He et al.(2016)孔径分布数据预测的压实GMZ01膨润土SWRC
Figure 5. Predicted SWRCs according to the pore size distribution data from He et al.(2016)
表 1 分形模型参数
Table 1. Parameters of the fractal model
参数 DWS110 C0.1S110 C1.0S110 e(试验求得) 0.67838 0.63973 0.62477 Gs(试验给出) 2.66 2.66 2.66 β(拟合参数) 0.43768 0.83013 1 ψAEV(由孔径求得)/MPa-1 2.304 2.326 0.641 D(拟合参数) 2.84334 2.92321 2.95016 R2 0.98098 0.98044 0.62477 表 2 双孔模型参数
Table 2. Parameters of the dual-porosity model
参数 DWS110 C0.1S110 C1.0S110 em(试验求得) 0.65063 0.61198 0.53249 e(试验求得) 0.67838 0.63973 0.62477 Gs(试验给出) 2.66 2.66 2.66 αom(拟合参数)/MPa-1 0.17318 0.14358 0.35903 αoM(拟合参数)/MPa-1 8.55×1041 4.167×1041 8.053×1042 nm(拟合参数) 1.25065 1.30729 1.31483 nM(拟合参数) 1.00325 1.00293 1.00092 mm(拟合参数) 0.200416 0.235059 0.239445 mM(拟合参数) 0.003239 0.002921 0.000919 R2 0.98186 0.98459 0.99516 -
Al-Badran Y, Baille W, Tripathy S, et al. 2017. Swelling behavior of bentonite-based backfilling materials in nuclear waste repository conditions[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 21(1): D4015006. Alonso E E, Romero E, Hoffmann C, et al. 2005. Expansive bentonite-sand mixtures in cyclic controlled-suction drying and wetting[J]. Engineering Geology, 81 (3): 213-226. doi: 10.1016/j.enggeo.2005.06.009 Bird N, Perrier E, Rieu M. 2008. The water retention function for a model of soil structure with pore and solid fractal distributions[J]. European Journal of Soil Science, 51 (1): 55-63. Chang C C, Cheng D H, Qiao X Y. 2019. Improving estimation of pore size distribution to predict the soil water retention curve from its particle size distribution[J]. Geoderma, 340 : 206-212. doi: 10.1016/j.geoderma.2019.01.011 Delage P, Lefebvre G. 1984. Study of the structure of the sensitive Champlain Clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 21 (1): 21-35. doi: 10.1139/t84-003 Della V G, Dieudonné A C, Jommi C, et al. 2015. Accounting for evolving pore size distribution in water retention models for compacted clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 39 (7): 702-723. doi: 10.1002/nag.2326 Dieudonné A C, Gatabin C, Talandier J, et al. 2016. Water retention behaviour of compacted bentonites: experimental observations and constitutive model[C]//E3S Web of Conferences. 3rd European Conference on Unsaturated Soils-"E-UNSAT 2016". Ghanabarian-Alavijeh B, Liaghat A, Huang G H, et al. 2010. Estimation of the van Genuchten soil water retention properties from soil textural data[J]. Pedosphere, 20 (4): 456-465. doi: 10.1016/S1002-0160(10)60035-5 Habasimbi P, Nishimura T. 2018. Comparison of soil-water characteristic curves in one-dimensional and isotropic stress conditions[J]. Soil Systems, 2(3): 43. doi: 10.3390/soilsystems2030043 He J, Wang Y, Li Y, et al. 2015. Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay[J]. Water Science and Engineering, 8 (2): 151-157. doi: 10.1016/j.wse.2015.04.004 He Y, Ye W M, Chen Y G, et al. 2016. Influence of pore fluid concentration on water retention properties of compacted GMZ01 bentonite[J]. Applied Clay Science, 129 : 131-141. doi: 10.1016/j.clay.2016.05.020 He Y, Zhang K N, Wu D Y. 2019a. Experimental and modeling study of soil water retention curves of compacted bentonite considering salt solution effects[J]. Geofluids, 2019, 1-11. He Y, Ye W M, Chen Y G, et al. 2019b. Effects of K+solutions on swelling behavior of compacted GMZ bentonite[J]. Engineering Geology, 249 : 241-248. doi: 10.1016/j.enggeo.2018.12.020 He Y, Ye W M, Chen Y G, et al. 2020. Effects of NaCl solution on the swelling and shrinkage behavior of compacted bentonite under one-dimensional conditions[J]. Bulletin of Engineering Geology and the Environment, 79 (1): 399-410. doi: 10.1007/s10064-019-01568-1 Hu R, Chen Y F, Liu H H, et al. 2013. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution[J]. Géotechnique, 63 (16): 1389-1405. doi: 10.1680/geot.12.P.182 Huang G H, Zhang R D. 2005. Evaluation of soil water retention curve with the pore-solid fractal model[J]. Geoderma, 127 (1): 52-61. Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27 (5): 1019-1026. Liu Z R, Ye W M, Cui Y J, et al. 2020a. A review on the packing density and homogeneity of granular materials[J]. Journal of Engineering Geology, 28 (S): 56-63. Liu Z R, Ye W M, Zhang Z, et al. 2020b. A review on packing and hydro-mechanical behaviour of bentonite pellet mixtures[J]. Journal of Engineering Geology, 28 (2): 294-305. Lloret A, Villar M V. 2007. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted"FEBEX"bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 32 (8): 701-715. Mao S Z. 2002. A study on soil-water characteristic curve of unsaturated soil[J]. Journal of Engineering Geology, 10 (2): 129-133. Mokni N, Olivella S, Valcke E, et al. 2011. Deformation and flow driven by osmotic processes in porous materials: Application to bituminised waste materials[J]. Transport in Porous Media, 86 (2): 635-662. doi: 10.1007/s11242-010-9644-2 Musso G, Romero E, Vecchia G D. 2013. Double-structure effects on the chemo-hydro-mechanical behaviour of a compacted active clay[J]. Géotechnique, 63 (3): 206-220. doi: 10.1680/geot.SIP13.P.011 Nasir O, Nguyen T S, Barnichon J D, et al. 2017. Simulation of hydromechanical behaviour of bentonite seals for containment of radioactive wastes[J]. Canadian Geotechnical Journal, 54 (8): 1055-1070. doi: 10.1139/cgj-2016-0102 Niu G, Sun D A, Shao L T, et al. 2019. The water retention behaviours and pore size distributions of undisturbed and remoulded complete-intense weathering mudstone[J]. European Journal of Environmental and Civil Engineering, 2019, 1-18. Pan D L, Ni W K, Yuan K Z, et al. 2020. Determination of soil-water characteristic curve variables based on VG model[J]. Journal of Engineering Geology, 28 (1): 69-76. Qiao X Y, Ma S Y, Pana G X, et al. 2019. Effects of temperature change on the soil water characteristic curve and a prediction model for the mu us bottomland, northern China[J]. Water, 11 (6): 1235-1249. doi: 10.3390/w11061235 Romero E, Della Vecchia G, Jommi C. 2011. An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 61 (4): 313-328. doi: 10.1680/geot.2011.61.4.313 Scheuermann A, Bieberstein A. 2007. Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution[C]//Springer Proceedings in Physics. Experimental Unsaturated Soil Mechanics. Berlin, Heidelberg: Springer. Tao G L, Chen Y, Xiao H L, et al. 2019. Determining soil-water characteristic curves from mercury intrusion porosimeter test data using fractal theory[J]. Energies, 12: 752. doi: 10.3390/en12040752 Van Genuchten M Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x Wang K. 2009. Water flow movement and solute transport in unsaturated soil[M]. Beijing: Science Press. Wang Y R. 2016. The report on the development of China's nuclear energy(2020)[R]. Beijing: China Nuclear Energy Association. Wang J P, Zhuang P Z, Luan J Y, et al. 2019. Estimation of unsaturated hydraulic conductivity of granular soils from particle size parameters[J]. Water, 11(9): 1826. doi: 10.3390/w11091826 Xu Y F, Dong P. 2002. Fractal models for the soil-water characteristics of unsaturated soils[J]. Rock and Soil Mechanics, 23 (4): 400-405. Yang M H, Chen H, Chen K. 2019. Study of the hysteresis effect model of SWCC boundary curves based on fractal theory[J]. Rock and Soil Mechanics, 40 (10): 3805-3812. Ye W M, Wan M, Chen B, et al. 2009. Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. Journal of Central South University of Technology, 16 (5): 821-826. doi: 10.1007/s11771-009-0136-x Ye W M, Zhang F, Chen B, et al. 2017. Advances on investigations into chemo-mechanical coupling effects on the volume change behavior of compacted GMZ01 bentonite[J]. Journal of Tongji University(Natural Science), 45 (11): 1577-1584. Ye W M, Liu Z R, Cui Y J. 2018. Advances in gas permeation problems of buffer/backfill materials in high-level radioactive waste geological repository[J]. Chinese Journal of Geotechnical Engineering, 40 (6): 1125-1134. Ye W M, Shi L J, Olivella S, et al. 2018. Simulation of a hydromechanical mock-up test on GMZ01 bentonite with double structure approach[J]. European Journal of Environmental and Civil Engineering, 22 (S1): 364-380. Ye W M, Liu Z R, Cui Y J, et al. 2020. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 42 (1): 29-36. Ye W M, Wang Y, Wang Q, et al. 2020. Stress-dependent temperature effect on the swelling behavior of compacted GMZ bentonite[J]. Bulletin of Engineering Geology and the Environment, 79 : 3897-3907. doi: 10.1007/s10064-020-01801-2 Zhou C Y, Liang N, Liu Z. 2020. Multifractal characteristics of pore structure of red beds soft rock at different saturations[J]. Journal of Engineering Geology, 28 (1): 1-9. 李同录, 范江文, 习羽, 等. 2019. 击实黄土孔隙结构对土水特征的影响分析[J]. 工程地质学报, 27 (5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045 刘樟荣, 叶为民, 崔玉军, 等. 2020a. 颗粒材料的堆积密度与均匀性研究进展[J]. 工程地质学报, 28(增): 56-63. doi: 10.13544/j.cnki.jeg.2020-354 刘樟荣, 叶为民, 张召, 等. 2020b. 膨润土颗粒混合物的堆积性质与水-力特性研究进展[J]. 工程地质学报, 28 (2): 294-305. doi: 10.13544/j.cnki.jeg.2020-089 毛尚之. 2002. 非饱和膨胀土的土-水特征曲线研究[J]. 工程地质学报, 10 (2): 129-133. doi: 10.3969/j.issn.1004-9665.2002.02.004 潘登丽, 倪万魁, 苑康泽, 等. 2020. 基于VG模型确定土水特征曲线基本参数[J]. 工程地质学报, 28 (1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156 王康. 2009. 非饱和土壤水流运动及溶质运移[M]. 北京: 科学出版社. 王毅韧. 2016. 中国核能发展报告(2020)[R]. 北京: 中国核能行业协会. 杨明辉, 陈贺, 陈可. 2019. 基于分形理论的SWCC边界曲线滞后效应模型研究[J]. 岩土力学, 40 (10): 3805-3812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910015.htm 徐永福, 董平. 2002. 非饱和土的水分特征曲线的分形模型[J]. 岩土力学, 23 (4): 400-405. doi: 10.3969/j.issn.1000-7598.2002.04.002 叶为民, 张峰, 陈宝, 等. 2017. 化-力耦合作用下GMZ01膨润土体变特性研究进展[J]. 同济大学学报(自然科学版), 45 (11): 1577-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201711002.htm 叶为民, 刘樟荣, 崔玉军. 2018. 高放废物地质处置库缓冲/回填材料的气体渗透问题研究进展[J]. 岩土工程学报, 40 (6): 1125-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806022.htm 叶为民, 刘樟荣, 崔玉军, 等. 2020. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 42 (1): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm 周翠英, 梁宁, 刘镇. 2020. 红层软岩遇水作用的孔隙结构多重分形特征[J]. 工程地质学报, 28 (1): 1-9 doi: 10.13544/j.cnki.jeg.2018-337 -